0000000001145578

AUTHOR

Jose J. Perez-grau

0000-0002-5421-8801

showing 2 related works from this author

Negative differential resistance and threshold-switching in conical nanopores with KF solutions

2021

Negative differential resistance (NDR) phenomena are under-explored in nanostructures operating in the liquid state. We characterize experimentally the NDR and threshold switching phenomena observed when conical nanopores are immersed in two identical KF solutions at low concentration. Sharp current drops in the nA range are obtained for applied voltages exceeding thresholds close to 1 V and a wide frequency window, which suggests that the threshold switching can be used to amplify small electrical perturbations because a small change in voltage typically results in a large change in current. While we have not given a detailed physical mechanism here, a phenomenological model is also includ…

010302 applied physicsRange (particle radiation)NanostructureMaterials sciencePhysics and Astronomy (miscellaneous)Condensed matter physics02 engineering and technologyConical surface021001 nanoscience & nanotechnology01 natural sciencesNanopore0103 physical sciencesPhenomenological modelCurrent (fluid)Differential (infinitesimal)0210 nano-technologyVoltageApplied Physics Letters
researchProduct

Fluoride-Induced Negative Differential Resistance in Nanopores: Experimental and Theoretical Characterization

2021

We describe experimentally and theoretically the fluoride-induced negative differential resistance (NDR) phenomena observed in conical nanopores operating in aqueous electrolyte solutions. The threshold voltage switching occurs around 1 V and leads to sharp current drops in the nA range with a peak-to-valley ratio close to 10. The experimental characterization of the NDR effect with single pore and multipore samples concern different pore radii, charge concentrations, scan rates, salt concentrations, solvents, and cations. The experimental fact that the effective radius of the pore tip zone is of the same order of magnitude as the Debye length for the low salt concentrations used here is su…

Range (particle radiation)Materials scienceNanotecnologiaConductanceConical surfaceThermal conductionThreshold voltagesymbols.namesakeNanoporeChemical physicssymbolsGeneral Materials ScienceMaterialsOrder of magnitudeDebye lengthACS Applied Materials & Interfaces
researchProduct