0000000001148367

AUTHOR

Yihua Wang

0000-0001-5561-0648

showing 4 related works from this author

A Unified Theory of Liquid-Liquid Demixing and Polymer Formation Kinetics

2009

Sickle hemoglobin is a natural hemoglobin mutation with a hydrophobic replacement of a charged aminoacid on the molecular surface. This leads to aggregation into rigid helical structures (“polymerization”), the underlying cause of sickle cell disease. It has also been shown that polymerization occurs in close correspondence with the phase transition of liquid-liquid demixing , or with the critically diverging fluctuations of local concentration occurring in its proximity. Due to this correspondence, polymerization kinetics remarkably appear to exhibit, with respect to demixing temperature, the same universal scaling features shown by amplitudes and lifetimes of fluctuations occurring in pro…

chemistry.chemical_classificationQuantitative Biology::BiomoleculesPhase transitionChemistryKineticsBiophysicsPolymerLight scatteringlaw.inventionCrystallographyPolymerizationlawChemical physicsCrystallizationUnified field theoryScalingBiophysical Journal
researchProduct

Light Scattering Measurements of Hemoglobin Critical Fluctuation and the Energy Landscape For Polymerization

2010

We have developed a novel method for measuring light scattering to observe critical fluctuations in hemoglobin (Hb) solutions. A small rectangular cell (0.2 x 4.0 x 30 mm) is filled with 24 μL of Hb solution. An optical fiber with outer diameter of 125 μm (62.5 μm core) is sealed into the cell in contact with the solution, and light scattering is measured at 90°. The flat faces of the cell permit measuring absorbance spectra to ensure sample integrity. The scattering source is a 785 nm laser diode that delivers 1.5 mW to the sample. Scattered light is detected by a Hamamatsu GaAs(Cs) PMT via a LWD microscope objective. Measured scattered light intensity agrees (±10%) with scattered intensit…

SpinodalOptical fiberLaser diodeScatteringChemistryAnalytical chemistryBiophysicsMolecular physicsLight scatteringIntensity (physics)law.inventionCore (optical fiber)PolymerizationlawBiophysical Journal
researchProduct

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) 1

2021

Contains fulltext : 232759.pdf (Publisher’s version ) (Closed access) In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to…

0301 basic medicineProgrammed cell deathSettore BIO/06AutophagosomeAutolysosome[SDV]Life Sciences [q-bio]lnfectious Diseases and Global Health Radboud Institute for Molecular Life Sciences [Radboudumc 4]Autophagy-Related ProteinsReviewComputational biology[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologySettore MED/0403 medical and health sciencesstressChaperone-mediated autophagyddc:570AutophagyLC3AnimalsHumanscancerSettore BIO/10Autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSet (psychology)Molecular Biologyvacuole.phagophore030102 biochemistry & molecular biologyvacuolebusiness.industryInterpretation (philosophy)AutophagyAutophagosomesneurodegenerationCell BiologyfluxMulticellular organismmacroautophagy030104 developmental biologyKnowledge baselysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleBiological AssayLysosomesbusinessBiomarkers[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

Autophagy

2021

In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide…

macroautophagy;autophagyAutophagosome[SDV]Life Sciences [q-bio]canceLC3 macroautophagyautophagosomeneurodegeneration;[SDV.BC]Life Sciences [q-bio]/Cellular BiologyAutophagy AutophagosomeNOstress vacuolestressautophagic processesstrerfluxLC3cancerguidelinesAutophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/06 - Anatomia Comparata E Citologia[SDV.BC] Life Sciences [q-bio]/Cellular BiologyComputingMilieux_MISCELLANEOUSMedaka oryzias latipesphagophorevacuoleQHneurodegenerationAutophagosome cancer flux LC3 lysosome macroautophagy neurodegeneration phagophore stress vacuoleautophagy; autophagic processes; guidelines; autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuolefluxmacroautophagystress.lysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/17 - ISTOLOGIARC
researchProduct