0000000001148569

AUTHOR

Xin Zhang

showing 13 related works from this author

Brain Cortical Complexity and Subcortical Morphometrics in Lifelong Premature Ejaculation

2020

Premature ejaculation (PE) is the most common male sexual dysfunction. The brain disturbances that cause this disorder remain poorly understood. This study aimed to investigate how the morphology of cortical and subcortical brain structures differed in PE, how these morphologic differences were associated with severity measures of PE, such as intravaginal ejaculatory latency time (IELT), and how these cortical and subcortical structures were causally connected through mediation analysis. Anatomical MRI scans were acquired from 39 male participants, 23 with PE (28.78 ± 4.32 years), and 16 without PE (27.88 ± 3.65 years). We used a subcortical analysis package within FSL to perform subcortica…

Thalamusgyrification index050105 experimental psychologylcsh:RC321-57103 medical and health sciencesBehavioral Neuroscience0302 clinical medicinePremature ejaculationmorphologymedicine0501 psychology and cognitive sciencesStatistical analysisRight nucleus accumbensmediation analysislcsh:Neurosciences. Biological psychiatry. NeuropsychiatryGyrificationBiological PsychiatryOriginal ResearchMorphometricsbusiness.industry05 social sciencesHuman NeuroscienceAnatomyComputational anatomyEjaculatory latencypremature ejaculationPsychiatry and Mental healthNeuropsychology and Physiological PsychologyNeurologymedicine.symptombusiness030217 neurology & neurosurgeryvertex analysisFrontiers in Human Neuroscience
researchProduct

Treatment with human umbilical cord-derived mesenchymal stem cells for COVID-19 patients with lung damage: a randomised, double-blind, placebo-contro…

2020

AbstractBACKGROUNDTreatment of severe Corona Virus Disease 2019 (COVID-19) is challenging. We performed a phase 2 trial to assess the efficacy and safety of human umbilical cord-mesenchymal stem cells (UC-MSCs) to treat severe COVID-19 patients with lung damage, based on our phase 1 data.METHODSIn this randomized, double-blind, and placebo-controlled trial, we recruited 101 severe COVID-19 patients with lung damage. They were randomly assigned to receive either UC-MSCs (4 × 107 cells per infusion) or placebo on day 0, 3, and 6. The primary endpoint was an altered proportion of whole lung lesion volumes from baseline to day 28. Other imaging outcomes, 6-minute walk test, maximum vital capaci…

medicine.medical_specialtyLungbusiness.industryIncidence (epidemiology)PlaceboGastroenterologyUmbilical cordmedicine.anatomical_structureInternal medicineDiffusing capacityClinical endpointmedicineStem cellAdverse effectbusiness
researchProduct

Recombinant Ganoderma lucidum Immunomodulatory Protein Improves the Treatment for Chemotherapy-Induced Neutropenia

2020

Ganoderma lucidum, also known as LINGZHI, has a long tradition of use in folk medicine of the Far East, which is documented in the oldest Chinese pharmacopoeia, declaring it a superior medicine. LINGZHI-8 (LZ-8) is an immunoregulatory fungal protein isolated from the fruiting body of Ganoderma lucidum. Neutropenia is a condition with an abnormally low levels of neutrophils in the blood, which is caused by numerous medical conditions or medications, such as chemotherapy. The current study demonstrated that recombinant LZ-8 (rLZ-8) from Pichia promoted the differentiation of bone marrow hematopoietic stem cells (HSCs) into granulocytes in a neutropenia mouse model induced by cyclophosphamide.…

0301 basic medicineCyclophosphamidegranulocyte-colony stimulating factorPharmacologyNeutropeniaColony stimulating factor 1 receptor03 medical and health sciences0302 clinical medicinecolony-stimulating factor 1 receptormedicineneutropeniaPharmacology (medical)rLZ-8Original ResearchPharmacologyFungal proteinbusiness.industrylcsh:RM1-950medicine.diseasehematopoietic stem cellsGranulocyte colony-stimulating factorHaematopoiesislcsh:Therapeutics. Pharmacology030104 developmental biologymedicine.anatomical_structure030220 oncology & carcinogenesisBone marrowStem cellbusinessmedicine.drugFrontiers in Pharmacology
researchProduct

Structural Evolution of Atomically Precise Thiolated Bimetallic [Au12+nCu32(SR)30+n]4– (n = 0, 2, 4, 6) Nanoclusters

2014

A series of all-thiol stabilized bimetallic Au-Cu nanoclusters, [Au(12+n)Cu32(SR)(30+n)](4-) (n = 0, 2, 4, 6 and SR = SPhCF3), are successfully synthesized and characterized by X-ray single-crystal analysis and density functional theory (DFT) calculations. Each cluster consists of a Keplerate two-shell Au12@Cu20 core protected by (6 - n) units of Cu2(SR)5 and n units of Cu2Au(SR)6 (n = 0, 2, 4, 6) motifs on its surface. The size and structural evolution of the clusters is atomically controlled by the Au precursors and countercations used in the syntheses. The clusters exhibit similar optical absorption properties that are not dependent on the number of surface Cu2Au(SR)6 units. Although DFT…

ta114ChemistrySuperatomGeneral ChemistryCrystal structureElectronic structureBiochemistryCatalysisNanoclustersCrystallographyColloid and Surface ChemistryNanocrystalCluster (physics)Density functional theoryta116Bimetallic stripJournal of the American Chemical Society
researchProduct

Tetraspanin CD151 Mediates Papillomavirus Type 16 Endocytosis

2013

ABSTRACT Human papillomavirus type 16 (HPV16) is the primary etiologic agent for cervical cancer. The infectious entry of HPV16 into cells occurs via a so-far poorly characterized clathrin- and caveolin-independent endocytic pathway, which involves tetraspanin proteins and actin. In this study, we investigated the specific role of the tetraspanin CD151 in the early steps of HPV16 infection. We show that surface-bound HPV16 moves together with CD151 within the plane of the membrane before they cointernalize into endosomes. Depletion of endogenous CD151 did not affect binding of viral particles to cells but resulted in reduction of HPV16 endocytosis. HPV16 uptake is dependent on the C-termina…

Small interfering RNAEndosomevirusesmedia_common.quotation_subjectDNA Mutational AnalysisImmunologyEndocytic cycleIntegrinTetraspanin 24EndocytosisMicrobiologyClathrinCell LineTetraspaninVirologyHumansInternalizationmedia_commonHuman papillomavirus 16integumentary systembiologyvirus diseasesVirus InternalizationMolecular biologyEndocytosisfemale genital diseases and pregnancy complicationsVirus-Cell InteractionsCell biologyGene Knockdown TechniquesInsect Sciencebiology.proteinMutant ProteinsJournal of Virology
researchProduct

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) 1

2021

Contains fulltext : 232759.pdf (Publisher’s version ) (Closed access) In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to…

0301 basic medicineProgrammed cell deathSettore BIO/06AutophagosomeAutolysosome[SDV]Life Sciences [q-bio]lnfectious Diseases and Global Health Radboud Institute for Molecular Life Sciences [Radboudumc 4]Autophagy-Related ProteinsReviewComputational biology[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologySettore MED/0403 medical and health sciencesstressChaperone-mediated autophagyddc:570AutophagyLC3AnimalsHumanscancerSettore BIO/10Autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSet (psychology)Molecular Biologyvacuole.phagophore030102 biochemistry & molecular biologyvacuolebusiness.industryInterpretation (philosophy)AutophagyAutophagosomesneurodegenerationCell BiologyfluxMulticellular organismmacroautophagy030104 developmental biologyKnowledge baselysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleBiological AssayLysosomesbusinessBiomarkers[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

Observation of the Anomalous Hall Effect in a Collinear Antiferromagnet

2020

Time-reversal symmetry breaking is the basic physics concept underpinning many magnetic topological phenomena such as the anomalous Hall effect (AHE) and its quantized variant. The AHE has been primarily accompanied by a ferromagnetic dipole moment, which hinders the topological quantum states and limits data density in memory devices, or by a delicate noncollinear magnetic order with strong spin decoherence, both limiting their applicability. A potential breakthrough is the recent theoretical prediction of the AHE arising from collinear antiferromagnetism in an anisotropic crystal environment. This new mechanism does not require magnetic dipolar or noncollinear fields. However, it has not …

Condensed Matter::Materials ScienceCondensed Matter - Materials ScienceCondensed Matter - Strongly Correlated ElectronsQuantum PhysicsStrongly Correlated Electrons (cond-mat.str-el)Condensed Matter - Mesoscale and Nanoscale PhysicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Materials Science (cond-mat.mtrl-sci)FOS: Physical sciencesApplied Physics (physics.app-ph)Physics - Applied PhysicsQuantum Physics (quant-ph)
researchProduct

Autophagy

2021

In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide…

macroautophagy;autophagyAutophagosome[SDV]Life Sciences [q-bio]canceLC3 macroautophagyautophagosomeneurodegeneration;[SDV.BC]Life Sciences [q-bio]/Cellular BiologyAutophagy AutophagosomeNOstress vacuolestressautophagic processesstrerfluxLC3cancerguidelinesAutophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/06 - Anatomia Comparata E Citologia[SDV.BC] Life Sciences [q-bio]/Cellular BiologyComputingMilieux_MISCELLANEOUSMedaka oryzias latipesphagophorevacuoleQHneurodegenerationAutophagosome cancer flux LC3 lysosome macroautophagy neurodegeneration phagophore stress vacuoleautophagy; autophagic processes; guidelines; autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuolefluxmacroautophagystress.lysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/17 - ISTOLOGIARC
researchProduct

CCDC 1020498: Experimental Crystal Structure Determination

2014

Related Article: Huayan Yang , Yu Wang , Juanzhu Yan , Xi Chen , Xin Zhang , Hannu Häkkinen , and Nanfeng Zheng|2014|J.Am.Chem.Soc.|136|7197|doi:10.1021/ja501811j

Space GroupCrystallographyCrystal Systemtetrakis(tetraphenylphosphonium) triacontakis(mu-4-(trifluoromethyl)benzenethiolato)-dodeca-gold-dotriaconta-copper hexane solvateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1020499: Experimental Crystal Structure Determination

2014

Related Article: Huayan Yang , Yu Wang , Juanzhu Yan , Xi Chen , Xin Zhang , Hannu Häkkinen , and Nanfeng Zheng|2014|J.Am.Chem.Soc.|136|7197|doi:10.1021/ja501811j

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterstetrakis(tetrabutylammonium) dotriacontakis(mu-4-(trifluoromethyl)benzenethiolato)-tetradeca-gold-dotriaconta-copper dichloromethane solvate hexahydrateExperimental 3D Coordinates
researchProduct

CCDC 1020496: Experimental Crystal Structure Determination

2014

Related Article: Huayan Yang , Yu Wang , Juanzhu Yan , Xi Chen , Xin Zhang , Hannu Häkkinen , and Nanfeng Zheng|2014|J.Am.Chem.Soc.|136|7197|doi:10.1021/ja501811j

tetrakis(tetraphenylphosphonium) icosakis(mu-4-(trifluoromethyl)benzenethiolato)-trideca-gold-dodeca-copper dichloromethane solvate tetrahydrateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1020497: Experimental Crystal Structure Determination

2014

Related Article: Huayan Yang , Yu Wang , Juanzhu Yan , Xi Chen , Xin Zhang , Hannu Häkkinen , and Nanfeng Zheng|2014|J.Am.Chem.Soc.|136|7197|doi:10.1021/ja501811j

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterstetrakis(tetraphenylphosphonium) tetratriacontakis(mu-4-(trifluoromethyl)benzenethiolato)-hexadeca-gold-dotriaconta-copperExperimental 3D Coordinates
researchProduct

CCDC 1020495: Experimental Crystal Structure Determination

2014

Related Article: Huayan Yang , Yu Wang , Juanzhu Yan , Xi Chen , Xin Zhang , Hannu Häkkinen , and Nanfeng Zheng|2014|J.Am.Chem.Soc.|136|7197|doi:10.1021/ja501811j

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterstetrakis(tetrabutylammonium) hexatriacontakis(mu-4-(trifluoromethyl)benzenethiolato)-octadeca-gold-dotriaconta-copper dichloromethane solvateExperimental 3D Coordinates
researchProduct