0000000001154112
AUTHOR
Torsten Akesson
Measurements ofWγandZγproduction inppcollisions ats=7 TeVwith the ATLAS detector at the LHC
The integrated and differential fiducial cross sections for the production of a W or Z boson in association with a high-energy photon are measured using pp collisions at root s = 7 TeV. The analyse ...
Search for long-lived neutral particles produced in pp collisions at s=13 TeV decaying into displaced hadronic jets in the ATLAS inner detector and muon spectrometer
A search is presented for pair production of long-lived neutral particles using 33 fb − 1 of √ s = 13 TeV proton–proton collision data, collected during 2016 by the ATLAS detector at the LHC. This search focuses on a topology in which one long-lived particle decays in the ATLAS inner detector and the other decays in the muon spectrometer. Special techniques are employed to reconstruct the displaced tracks and vertices in the inner detector and in the muon spectrometer. One event is observed that passes the full event selection, which is consistent with the estimated background. Limits are placed on scalar boson propagators with masses from 125 GeV to 1000 GeV decaying into pairs of …
Search for pair production of gluinos decaying via stop and sbottom in events withb-jets and large missing transverse momentum inppcollisions ats=13 TeVwith the ATLAS detector
A search for supersymmetry involving the pair production of gluinos decaying via third-generation squarks to the lightest neutralino (chi) over tilde (0)(1) is reported. It uses an LHC proton-proto ...
Measurement of exclusiveγγ→W+W−production and search for exclusive Higgs boson production inppcollisions ats=8 TeVusing the ATLAS detector
Searches for exclusively produced $W$ boson pairs in the process $pp(\gamma\gamma) \rightarrow pW^+W^-p$ and exclusively produced Higgs boson in the process $pp(gg) \rightarrow pHp$ have been performed using $e^{\pm}\mu^{\mp}$ final states. These measurements use 20.2 fb$^{-1}$ of $pp$ collisions collected by the ATLAS experiment at a center-of-mass energy $\sqrt{s}=8$ TeV at the LHC. Exclusive production of $W^+W^-$ consistent with the Standard Model prediction is found with 3.0$\sigma$ significance. The exclusive $W^+W^-$ production cross-section is determined to be $\sigma (\gamma\gamma\rightarrow W^{+}W^{-}\rightarrow e^{\pm}\mu^{\mp} X) = 6.9 \pm 2.2 (\mathrm{stat.}) \pm 1.4 (\mathrm{s…
Measurement of soft-drop jet observables in pp collisions with the ATLAS detector at s=13 TeV
Jet substructure quantities are measured using jets groomed with the soft-drop grooming procedure in dijet events from 32.9 fb-1 of pp collisions collected with the ATLAS detector at s=13 TeV. These observables are sensitive to a wide range of QCD phenomena. Some observables, such as the jet mass and opening angle between the two subjets which pass the soft-drop condition, can be described by a high-order (resummed) series in the strong coupling constant αS. Other observables, such as the momentum sharing between the two subjets, are nearly independent of αS. These observables can be constructed using all interacting particles or using only charged particles reconstructed in the inner tra…
Measurement of theZZproduction cross section inpp¯collisions ats=1.96 TeV
The ZZ production cross section in proton-proton collisions at 13 TeV center-of-mass energy is measured using 3.2 fb⁻¹ of data recorded with the ATLAS detector at the Large Hadron Collider. The considered Z boson candidates decay to an electron or muon pair of mass 66-116 GeV. The cross section is measured in a fiducial phase space reflecting the detector acceptance. It is also extrapolated to a total phase space for Z bosons in the same mass range and of all decay modes, giving 16.7 +2.2 −2.0 (stat.) +0.9 −0.7 (syst.) +1.0 −0.7 (lumi.) pb. The results agree with standard model predictions.
Two-particle azimuthal correlations in photonuclear ultraperipheral Pb+Pb collisions at 5.02 TeV with ATLAS
We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina, YerPhI, Armenia, ARC, Australia, BMWFW and FWF, Austria, ANAS, Azerbaijan, SSTC, Belarus, CNPq and FAPESP, Brazil, NSERC, NRC, and CFI, Canada, CERN and ANID, Chile, CAS, MOST, and NSFC, China, COLCIENCIAS, Colombia, MSMT CR, MPO CR, and VSC CR, Czech Republic, DNRF and DNSRC, Denmark, IN2P3-CNRS and CEA-DRF/IRFU, France, SRNSFG, Georgia, BMBF, HGF, and MPG, Germany, GSRT, Greece, RGC and Hong Kong SAR, China, ISF and Benoziyo Center, Israel, INFN, Italy, MEXT and JSPS, Japan, CNR…