0000000001158093

AUTHOR

Gurucharan V. Karnad

showing 4 related works from this author

Evidence for phonon skew scattering in the spin Hall effect of platinum

2018

We measure and analyze the effective spin Hall angle of platinum in the low-residual resistivity regime by second-harmonic measurements of the spin-orbit torques for a multilayer of $\mathrm{Pt}|\mathrm{Co}|{\mathrm{AlO}}_{x}$. An angular-dependent study of the torques allows us to extract the effective spin Hall angle responsible for the damping-like torque in the system. We observe a strikingly nonmonotonic and reproducible temperature dependence of the torques. This behavior is compatible with recent theoretical predictions which include both intrinsic and extrinsic (impurities and phonons) contributions to the spin Hall effect at finite temperatures.

PhysicsCondensed matter physics530 PhysicsPhononScatteringddc:530chemistry.chemical_element02 engineering and technology530 PhysikCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnology01 natural sciencesMeasure (mathematics)chemistryImpurityElectrical resistivity and conductivity0103 physical sciencesSpin Hall effectddc:530Condensed Matter::Strongly Correlated Electrons010306 general physics0210 nano-technologyPlatinumSpin-½Physical Review B
researchProduct

Modification of Dzyaloshinskii-Moriya-Interaction-Stabilized Domain Wall Chirality by Driving Currents

2018

We measure and analyze the chirality of Dzyaloshinskii-Moriya-interaction (DMI) stabilized spin textures in multilayers of $\mathrm{Ta}|{\mathrm{Co}}_{20}{\mathrm{F}}_{60}{\mathrm{B}}_{20}|\mathrm{MgO}$. The effective DMI is measured experimentally using domain wall motion measurements, both in the presence (using spin-orbit torques) and absence of driving currents (using magnetic fields). We observe that the current-induced domain wall motion yields a change in effective DMI magnitude and opposite domain wall chirality when compared to field-induced domain wall motion (without current). We explore this effect, which we refer to as current-induced DMI, by providing possible explanations for…

Current (mathematics)Current-inducedGeneral Physics and AstronomyFOS: Physical sciencesSpin currents02 engineering and technology-01 natural sciencesMeasure (mathematics)Spin current0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)ddc:55022 Física010306 general physicsDomain Wall ChiralitySpin-½PhysicsCondensed matter physicsfísicaCondensed Matter - Mesoscale and Nanoscale PhysicsTheoretical predictionsPhysics021001 nanoscience & nanotechnologyMagnetic fieldDomain wall (magnetism)Dzyaloshinskii-Moriya-interaction (DMI)0210 nano-technologyChirality (chemistry)Field-induced domainDzyaloshinskii-Moriya-interaction
researchProduct

Effective field analysis using the full angular spin-orbit torque magnetometry dependence

2017

Spin-orbit torques promise ultra-efficient magnetization switching used for advanced devices based on emergent quasi-particles such as domain walls and skyrmions. Recently, the spin structure dynamics, materials and systems with tailored spin-orbit torques are being developed. A method, which allows one to detect the acting torques in a given system as a function of the magnetization direction is the torque-magnetometry method based on a higher harmonics analysis of the anomalous Hall-effect. Here we show that the effective fields acting on magnetic domain walls that govern the efficiency of their dynamics require a sophisticated analysis taking into account the full angular dependence of t…

PhysicsCondensed matter physicsMagnetic domainCondensed Matter - Mesoscale and Nanoscale PhysicsMagnetometerDynamics (mechanics)FOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnology01 natural scienceslaw.inventionMagnetizationlawHarmonics0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)QuasiparticleTorqueAstrophysics::Earth and Planetary Astrophysics[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]010306 general physics0210 nano-technologyComputingMilieux_MISCELLANEOUSSpin-½Physical Review B
researchProduct

Ferromagnetic layer thickness dependence of the Dzyaloshinskii-Moriya interaction and spin-orbit torques in Pt\Co\AlOx

2016

We report the thickness dependence of Dzyaloshinskii-Moriya interaction (DMI) and spin-orbit torques (SOTs) in Pt\Co(t)\AlOx, studied by current-induced domain wall (DW) motion and second-harmonic experiments. From the DW motion study, a monotonous decay of the effective DMI strength with an increasing Co thickness is observed, in agreement with a DMI originating at the Pt\Co interface. The study of the ferromagnetic thickness dependence of spin-orbit torques reveals a more complex behavior. The effective SOT-field driving the DW motion is found to initially increase and then saturate with an increasing ferromagnetic thickness, while the effective SOT-fields acting on a saturated magnetic s…

Condensed Matter - Mesoscale and Nanoscale PhysicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)FOS: Physical sciencesCondensed Matter::Strongly Correlated Electrons
researchProduct