0000000001160165

AUTHOR

O. Mena

showing 6 related works from this author

High intensity neutrino oscillation facilities in Europe

2013

The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Frejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of mu(+) and mu(-) beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neu…

Nuclear and High Energy PhysicsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and Detectors[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]7. Clean energy01 natural sciencesNuclear physicsneutrino0103 physical sciencesEmmaFysiklcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530010306 general physicsNeutrino oscillationQCAstroparticle physicsPhysicsLarge Hadron ColliderBeta-Beam010308 nuclear & particles physicsFísicaSurfaces and InterfacesAccelerators and Storage RingsNeutrino detectorPhysical Scienceslcsh:QC770-798Physics::Accelerator PhysicsNeutrino FactoryHigh Energy Physics::ExperimentNeutrino[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Storage ringLepton
researchProduct

Leptonic CP Violation at the neutrino factory

2001

In this talk, based on the work \cite{cpviolation}, we refine our previous analysis \cite{golden} of the sensitivity to leptonic CP violation and $\tetaot$ at a neutrino factory in the LMA-MSW scenario, by exploring the full range of these two parameters. We have discovered that there exist, at fixed neutrino energy, $E_\nu$, and baseline, $L$, degenerate solutions. Although the spectral analysis helps in disentangling fake from true solutions, a leftover product of this degeneracy remains for a realistic detector, which we analyse. Furthermore, we take into account the expected uncertainties on the solar and atmospheric oscillation parameters and in the average Earth matter density along t…

High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics::PhenomenologyFOS: Physical sciencesHigh Energy Physics::Experiment
researchProduct

Neutrino Mass Ordering from Oscillations and Beyond: 2018 Status and Future Prospects

2018

The ordering of the neutrino masses is a crucial input for a deep understanding of flavor physics, and its determination may provide the key to establish the relationship among the lepton masses and mixings and their analogous properties in the quark sector. The extraction of the neutrino mass ordering is a data-driven field expected to evolve very rapidly in the next decade. In this review, we both analyze the present status and describe the physics of subsequent prospects. Firstly, the different current available tools to measure the neutrino mass ordering are described. Namely, reactor, long-baseline (accelerator and atmospheric) neutrino beams, laboratory searches for beta and neutrinol…

QuarkParticle physicsneutrino masses and flavor mixingCosmology and Nongalactic Astrophysics (astro-ph.CO)Field (physics)lcsh:AstronomyCosmic background radiationneutrino mass orderingFOS: Physical scienceslarge scale structure formation7. Clean energy01 natural sciencesCosmologyPartícules (Física nuclear)lcsh:QB1-991High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesNeutrino oscillation010303 astronomy & astrophysicsPhysicsneutrino oscillations010308 nuclear & particles physicslcsh:QC801-809High Energy Physics::Phenomenologyneutrinoless double beta (0vββ) decayAstronomy and AstrophysicsHigh Energy Physics - PhenomenologySupernovalcsh:Geophysics. Cosmic physicscosmic microwave Background (CMB)High Energy Physics::ExperimentNeutrinoAstrophysics - Cosmology and Nongalactic AstrophysicsLeptonFrontiers in Astronomy and Space Sciences
researchProduct

Summary of golden measurements at a ν-factory

2000

The precision and discovery potential of a neutrino factory based on muon storage rings is summarized. For three-family neutrino oscillations, we analyze how to measure or severely constraint the angle $\theta_{13}$, CP violation, MSW effects and the sign of the atmospheric mass difference $\Delta m^2_{23}$. The appearance of ``wrong-sign muons'' at three reference baselines is considered: 732 km, 3500 km and 7332 km. We exploit the dependence of the signal on the neutrino energy, and include as well realistic background estimations and detection efficiencies. The optimal baseline turns out to be $O$(3000 km).

PhysicsNuclear and High Energy PhysicsParticle physicsMuonPhysics::Instrumentation and DetectorsHigh Energy Physics::PhenomenologyMeasure (mathematics)High Energy Physics - PhenomenologyCP violationFísica nuclearHigh Energy Physics::ExperimentNeutrino FactoryNeutrinoNeutrino oscillationInstrumentationEnergy (signal processing)Sign (mathematics)Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Chi2 profiles from Valencia neutrino global fit

2021

We provide here the 1D and 2D chi2 profiles from our most recent global fit of neutrino oscillation data (DOI:10.1007/JHEP02(2021)071). The files are available at https://globalfit.astroparticles.es/.

neutrino oscillationsneutrinos
researchProduct

Light sterile neutrino sensitivity at the nuSTORM facility

2014

A facility that can deliver beams of electron and muon neutrinos from the decay of a stored muon beam has the potential to unambiguously resolve the issue of the evidence for light sterile neutrinos that arises in short-baseline neutrino oscillation experiments and from estimates of the effective number of neutrino flavors from fits to cosmological data. In this paper, we show that the nuSTORM facility, with stored muons of 3.8 GeV/c $\pm$ 10%, will be able to carry out a conclusive muon neutrino appearance search for sterile neutrinos and test the LSND and MiniBooNE experimental signals with 10$\sigma$ sensitivity, even assuming conservative estimates for the systematic uncertainties. This…

Nuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy & AstrophysicsComputer Science::Digital LibrariesPartícules (Física nuclear)High Energy Physics - ExperimentMiniBooNENuclear physicsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0201 Astronomical and Space SciencesTOOLKITNeutrino oscillationDETECTOR0206 Quantum PhysicsPhysicsGALLEXScience & Technologyhep-exPhysicsPHYSICS PARTICLES & FIELDSHigh Energy Physics::Phenomenologyhep-phSolar neutrino problemNuclear & Particles PhysicsCosmic neutrino backgroundHigh Energy Physics - PhenomenologyNeutrino detectorPhysical Sciences0202 Atomic Molecular Nuclear Particle and Plasma PhysicsComputer Science::Mathematical SoftwareMeasurements of neutrino speedPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentNeutrinoParticle Physics - Experiment
researchProduct