0000000001163894

AUTHOR

Patrick Merz

showing 2 related works from this author

An ancestral allele of grapevine transcription factor MYB14 promotes plant defence

2016

Highlight The molecular mechanisms underlying the elevated inducibility of stilbene in pathogen-resistant Vitis sylvestris can be explained by the increased inducibility of the MYB14 promoter.

0106 biological sciences0301 basic medicinestilbene synthaseGenotypePhysiologyMYB14Ultraviolet Raysflg22Plant ScienceResveratrol01 natural sciencesModels Biological03 medical and health scienceschemistry.chemical_compoundPlasmopara viticolaOnium CompoundsGenotypePlant ImmunityVitisJasmonateAllelePromoter Regions GeneticTranscription factorAllelesPlant Proteinschemistry.chemical_classificationGeneticsUV.biologyPhytoalexinfungifood and beveragesbiology.organism_classificationgrapevine (V. sylvestris)030104 developmental biologychemistryOomycetesPlasmopara viticolaSalicylic acid010606 plant biology & botanyResearch PaperTranscription FactorsJournal of Experimental Botany
researchProduct

Orchestration of the stilbene synthase gene family and their regulators by subgroup 2 MYB genes

2021

The control of plant specialised metabolism is exerted by transcription factors and co-regulators acting on cis-regulatory DNA sequences of pathway-structural genes, determining when, where, and how metabolites are accumulated. A particularly interesting case for studying the transcriptional control of metabolism is represented by stilbenoids, produced within the phenylpropanoid pathway, as their ability to inhibit infection by coronaviruses MERS-CoV and SARS-CoV has been recently demonstrated in vitro. Integrative omic studies in grapevine (Vitis vinifera L.), including gene co-expression networks, have previously highlighted several transcription factors (TFs) from different gene families…

researchProduct