0000000001163913
AUTHOR
Jean-charles Faugère
Determinantal sets, singularities and application to optimal control in medical imagery
International audience; Control theory has recently been involved in the field of nuclear magnetic resonance imagery. The goal is to control the magnetic field optimally in order to improve the contrast between two biological matters on the pictures. Geometric optimal control leads us here to analyze mero-morphic vector fields depending upon physical parameters , and having their singularities defined by a deter-minantal variety. The involved matrix has polynomial entries with respect to both the state variables and the parameters. Taking into account the physical constraints of the problem, one needs to classify, with respect to the parameters, the number of real singularities lying in som…
Algebraic-geometric techniques for the feedback classification and robustness of the optimal control of a pair of Bloch equations with application to Magnetic Resonance Imaging
The aim of this article is to classify the singular trajectories associated with the optimal control problems of a pair of controlled Bloch equations. The motivation is to analyze the robustness of the optimal solutions to the contrast and the time-minimal saturation problem, in magnetic resonance imaging, with respect to the parameters and B1-inhomogeneity. For this purpose, we use various computer algebra algorithms and methods to study solutions of polynomial systems of equations and inequalities which are used for classification issues: Gröbner basis, cylindrical algebraic decomposition of semi-algebraic sets, Thom's isotopy lemma.