0000000001164342

AUTHOR

Paul Yates

0000-0001-9317-0145

EFFICIENT MACHINE LEARNING FRAMEWORK FOR COMPUTER-AIDED DETECTION OF CEREBRAL MICROBLEEDS USING THE RADON TRANSFORM

International audience; Recent developments of susceptibility weighted MR techniques have improved visualization of venous vasculature and underlying pathologies such as cerebral microbleed (CMB). CMBs are small round hypointense lesions on MRI images that are emerging as a potential biomarker for cerebrovascular disease. CMB manual rating has limited reliability, is time-consuming and is prone to errors as small CMBs can be easily missed or mistaken for venous crosssections. This paper presents a computer-aided detection technique that utilizes a novel cascade of random forest classifiers which are trained on robust Radon-based features with an unbalanced sample distribution. The training …

research product

Computer-aided detection of cerebral microbleeds in susceptibility-weighted imaging.

Susceptibility-weighted imaging (SWI) is recognized as the preferred MRI technique for visualizing cerebral vasculature and related pathologies such as cerebral microbleeds (CMBs). Manual identification of CMBs is time-consuming, has limited reliability and reproducibility, and is prone to misinterpretation. In this paper, a novel computer-aided microbleed detection technique based on machine learning is presented: First, spherical-like objects (potential CMB candidates) with their corresponding bounding boxes were detected using a novel multi-scale Laplacian of Gaussian technique. A set of robust 3-dimensional Radon- and Hessian-based shape descriptors within each bounding box were then ex…

research product

AUTOMATIC DETECTION OF SMALL SPHERICAL LESIONS USING MULTISCALE APPROACH IN 3D MEDICAL IMAGES

International audience; Automated detection of small, low level shapes such as circular/spherical objects in images is a challenging computer vision problem. For many applications, especially microbleed detection in Alzheimer's disease, an automatic pre-screening scheme is required to identify potential seeds with high sensitivity and reasonable specificity. A new method is proposed to detect spherical objects in 3D medical images within the multi-scale Laplacian of Gaussian framework. The major contributions are (1) breaking down 3D sphere detection into 1D line profile detection along each coordinate dimension, (2) identifying center of structures by normalizing the line response profile …

research product