0000000001170096

AUTHOR

C. Gorges

showing 13 related works from this author

Isomer shift and magnetic moment of the long-lived 1/2$^{+}$ isomer in $^{79}_{30}$Zn$_{49}$: signature of shape coexistence near $^{78}$Ni

2016

Collinear laser spectroscopy has been performed on the $^{79}_{30}$Zn$_{49}$ isotope at ISOLDE-CERN. The existence of a long-lived isomer with a few hundred milliseconds half-life was confirmed, and the nuclear spins and moments of the ground and isomeric states in $^{79}$Zn as well as the isomer shift were measured. From the observed hyperfine structures, spins $I = 9/2$ and $I = 1/2$ are firmly assigned to the ground and isomeric states. The magnetic moment $\mu$ ($^{79}$Zn) = $-$1.1866(10) $\mu_{\rm{N}}$, confirms the spin-parity $9/2^{+}$ with a $\nu g_{9/2}^{-1}$ shell-model configuration, in excellent agreement with the prediction from large scale shell-model theories. The magnetic mo…

Nuclear Theory (nucl-th)nucl-th[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]Nuclear TheoryNuclear Physics - Theoryddc:550FOS: Physical sciencesNuclear Physics - Experiment[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Präzisionsexperimente - Abteilung BlaumNuclear Experiment (nucl-ex)nucl-exNuclear Experiment
researchProduct

Investigating the large deformation of the 5/2+ isomeric state in Zn73 : An indicator for triaxiality

2018

PhysicsLarge deformationCondensed matter physics010308 nuclear & particles physics0103 physical sciencesState (functional analysis)010306 general physics01 natural sciencesPhysical Review C
researchProduct

Isotope shift of40,42,44,48Ca in the 4s2S1/2→ 4p2P3/2transition

2015

We report on improved isotope shift measurements of the isotopes 40,42,44,48Ca in the 4s2S1/2→4p2P3/2 transition using collinear laser spectroscopy. Accurately known isotope shifts in the 4s2S1/2→4p2P1/2 (D1) transition were used to calibrate the ion beam energy with an uncertainty of ΔU ≈ ± 0.25 V. The accuracy in the D2 transition was improved by a factor of 5–10. A King-plot analysis of the two transitions revealed that the field shift factor in the D2 line is about 1.8(13)% larger than in the D1 transition which is ascribed to relativistic contributions of the 4p1/2 wave function.

PhysicsField (physics)Ion beamIsotopeIsotopic shiftPräzisionsexperimente - Abteilung BlaumAtomic physicsCondensed Matter PhysicsSpectroscopyAtomic and Molecular Physics and OpticsShift factorLine (formation)Journal of Physics B: Atomic, Molecular and Optical Physics
researchProduct

Laser Spectroscopy of Neutron-Rich Tin Isotopes: A Discontinuity in Charge Radii across the N=82 Shell Closure

2019

Physical review letters 122(19), 192502 (2019). doi:10.1103/PhysRevLett.122.192502

Physics MultidisciplinaryGeneral Physics and Astronomychemistry.chemical_elementLINE[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences530Effective nuclear chargeFORCECharge radiusDEPENDENCEMOMENTS0103 physical sciencesIsotopes of tinNeutronddc:530Nuclear Physics - Experiment010306 general physicsSpectroscopyNuclear ExperimentComputingMilieux_MISCELLANEOUSPhysicsScience & TechnologyNUCLEIPhysicsddc:chemistryPairingPhysical SciencesAtomic physicsTinNuclear density
researchProduct

High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED

2017

Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209Bi82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron–nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209Bi82+,80+ with a precision that is improve…

Electromagnetic fieldIONSNUCLEAR MAGNETIZATION DISTRIBUTIONScienceGeneral Physics and Astronomychemistry.chemical_elementBEAMElectron01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyArticleBismuthLITHIUM-LIKE IONS0103 physical sciencesBound statePhysics::Atomic Physics010306 general physicsLASER SPECTROSCOPYHyperfine structureQuantumPhysicsMultidisciplinaryScience & Technology010308 nuclear & particles physicsQNuclear structureGeneral ChemistryMagnetic fieldMultidisciplinary ScienceschemistryScience & Technology - Other TopicsAtomic physicsRADIINature Communications
researchProduct

Charge Radius of the Short-Lived Ni68 and Correlation with the Dipole Polarizability

2020

We present the first laser spectroscopic measurement of the neutron-rich nucleus ^{68}Ni at the N=40 subshell closure and extract its nuclear charge radius. Since this is the only short-lived isotope for which the dipole polarizability α_{D} has been measured, the combination of these observables provides a benchmark for nuclear structure theory. We compare them to novel coupled-cluster calculations based on different chiral two- and three-nucleon interactions, for which a strong correlation between the charge radius and dipole polarizability is observed, similar to the stable nucleus ^{48}Ca. Three-particle-three-hole correlations in coupled-cluster theory substantially improve the descrip…

PhysicsIsotopeNuclear TheoryNuclear structureGeneral Physics and AstronomyRadius01 natural sciencesEffective nuclear chargeDipolePolarizabilityCharge radius0103 physical sciencesNeutronPhysics::Atomic PhysicsAtomic physicsNuclear Experiment010306 general physicsPhysical Review Letters
researchProduct

Evolution of nuclear structure in neutron-rich odd-Zn isotopes and isomers

2017

Collinear laser spectroscopy was performed on Zn (Z=30) isotopes at ISOLDE, CERN. The study of hyperfine spectra of nuclei across the Zn isotopic chain, N=33–49, allowed the measurement of nuclear spins for the ground and isomeric states in odd-A neutron-rich nuclei up to N=50. Exactly one long-lived (&

Nuclear and High Energy Physicsshell closureShell closureNuclear TheoryLasermagnetic dipole moment[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesQuadrupole momentMagnetic dipole momentNaturvetenskap0103 physical sciencesPhysics::Atomic and Molecular ClustersDalton Nuclear InstituteNuclear Physics - Experimentddc:530NeutronPhysics::Atomic Physics010306 general physicsNuclear ExperimentHyperfine structurePhysicsValence (chemistry)quadrupole momentMagnetic moment010308 nuclear & particles physicsNuclear structurePhysique atomique et nucléairelcsh:QC1-999laserZincResearchInstitutes_Networks_Beacons/dalton_nuclear_instituteZinc ; Magnetic dipole moment ; Quadrupole moment ; Laser ; Shell closureQuadrupoleNuclear magnetic momentPräzisionsexperimente - Abteilung BlaumAtomic physicsNatural SciencesMagnetic dipolelcsh:Physics
researchProduct

Laser spectroscopy of the ground-state hyperfine structure in H-like and Li-like bismuth

2014

The LIBELLE experiment performed at the experimental storage ring (ESR) at the GSI Helmholtz Center in Darmstadt aims for the determination of the ground state hyperfine (HFS) transitions and lifetimes in hydrogen-like (209Bi82+) and lithium-like (209Bi80+) bismuth. The study of HFS transitions in highly charged ions enables precision tests of QED in extreme electric and magnetic fields otherwise not attainable in laboratory experiments. While the HFS transition in H-like bismuth was already observed in earlier experiments at the ESR, the LIBELLE experiment succeeded for the first time to measure the HFS transition in Li-like bismuth in a laser spectroscopy experiment.

Precision tests of QEDHistory02 Physical Scienceschemistry.chemical_elementCharged particle09 EngineeringComputer Science ApplicationsEducationBismuthIonMagnetic fieldCondensed Matter::Materials SciencechemistryPhysics::Atomic PhysicsAtomic physicsGround stateSpectroscopyNuclear ExperimentHyperfine structure
researchProduct

High-resolution laser spectroscopy of Al27–32

2021

Hyperfine spectra of $^\text{27-32}$Al ($Z=13$) have been measured at the ISOLDE-CERN facility via collinear laser spectroscopy using the $3s^23p\ ^2\text{P}^\text{o} _{3/2}\rightarrow 3s^24s\ ^2\text{S}_{1/2}$ atomic transition. For the first time, mean-square charge radii of radioactive aluminum isotopes have been determined alongside the previously unknown magnetic dipole moment of $^{29}$Al and electric quadrupole moments of $^{29,30}$Al. A potentially reduced charge radius at $N=19$ may suggest an effect of the $N=20$ shell closure, which is visible in the Al chain, contrary to other isotopic chains in the $sd$ shell. The experimental results are compared to theoretical calculations in…

PhysicsMagnetic moment010308 nuclear & particles physicsCharge (physics)7. Clean energy01 natural sciencesSpectral lineCharge radius0103 physical sciencesQuadrupoleAtomic physics010306 general physicsSpectroscopyMagnetic dipoleHyperfine structurePhysical Review C
researchProduct

An improved value for the hyperfine splitting of hydrogen-like209Bi82+

2015

We report an improved measurement of the hyperfine splitting in hydrogen-like bismuth (209Bi82+) at the experimental storage ring ESR at GSI by laser spectroscopy on a coasting beam. Accuracy was improved by about an order of magnitude compared to the first observation in 1994. The most important improvement is an in situ high voltage measurement at the electron cooler (EC) platform with an accuracy at the 10 ppm level. Furthermore, the space charge effect of the EC current on the ion velocity was determined with two independent techniques that provided consistent results. The result of nm provides an important reference value for experiments testing bound-state quantum electrodynamics in t…

Physicschemistry.chemical_elementElectronCondensed Matter PhysicsSpace chargeAtomic and Molecular Physics and OpticsMagnetic fieldBismuthIonchemistryAtomic physicsSpectroscopyHyperfine structureOrder of magnitudeJournal of Physics B: Atomic, Molecular and Optical Physics
researchProduct

Investigating the large deformation of the 5/2(+) isomeric state in Zn-73: An indicator for triaxiality

2018

Recently reported nuclear spins and moments of neutron-rich Zn isotopes measured at ISOLDE-CERN [C. Wraith et al., Phys. Lett. B 771, 385 (2017)PYLBAJ0370-269310.1016/j.physletb.2017.05.085] show an uncommon behavior of the isomeric state in Zn73. Additional details relating to the measurement and analysis of the Zn73m hyperfine structure are addressed here to further support its spin-parity assignment 5/2+ and to estimate its half-life. A systematic investigation of this 5/2+ isomer indicates that significant collectivity appears due to proton/neutron E2 excitations across the proton Z = 28 and neutron N = 50 shell gaps. This is confirmed by the good agreement of the observed quadrupole mo…

Nuclear TheoryNuclear Experiment
researchProduct

Charge radius of the short-lived $^{68}$Ni and correlation with the dipole polarizability

2020

We present the first laser spectroscopic measurement of the neutron-rich nucleus $^{68}$Ni at the \mbox{$N=40$} subshell closure and extract its nuclear charge radius. Since this is the only short-lived isotope for which the dipole polarizability $\alpha_{\rm D}$ has been measured, the combination of these observables provides a benchmark for nuclear structure theory. We compare them to novel coupled-cluster calculations based on different chiral two- and three-nucleon interactions, for which a strong correlation between the charge radius and dipole polarizability is observed, similar to the stable nucleus $^{48}$Ca. Three-particle--three-hole correlations in coupled-cluster theory substant…

[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]Nuclear Theorynucl-thNuclear TheoryFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nucl-exNuclear Theory (nucl-th)Nuclear Physics - Theoryddc:530Nuclear Physics - ExperimentPhysics::Atomic PhysicsNuclear Experiment (nucl-ex)Präzisionsexperimente - Abteilung BlaumNuclear ExperimentNuclear ExperimentNuclear Physics
researchProduct

High-resolution laser spectroscopy of $^{27-32}$Al

2020

Physical review / C 103(1), 014318 (2021). doi:10.1103/PhysRevC.103.014318

isotoopitspektroskopiaFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Structurenucl-ex530ddc:530Nuclear Physics - ExperimentalumiiniNuclear Experiment (nucl-ex)Präzisionsexperimente - Abteilung BlaumydinfysiikkaNuclear Experiment
researchProduct