0000000001170939

AUTHOR

Ghali Yakoub

Power production forecast for distributed wind energy systems using support vector regression

Due to the inherent intermittency in wind power production, reliable short-term wind power production forecasting has become essential for the efficient grid and market integration of wind energy. The current wind power production forecasting schemes are predominantly developed for wind farms. With the rapid growth in the microgrid sector and the increasing number of wind turbines integrated with these local grids, power production forecasting schemes are becoming essential for distributed wind energy systems as well. This paper proposes a power production forecasting scheme developed explicitly for distributed wind energy projects. The proposed system integrates two submodels based on supp…

research product

Downscaling and improving the wind forecasts from NWP for wind energy applications using support vector regression

Abstract The stochastic nature of wind poses challenges in the large scale integration of wind energy with the grid. Wind characteristics at a site may significantly vary with time. which will be reflected on the wind power production. Understanding and managing such variations could be challenging for wind farm owners. energy traders and grid operators. In this work. we propose models based on support vector regression (SVR) to downscale the speed and direction of wind at a specific site using both historical observed measurements and numerical weather predictions (NWP). Several meteorological variables. considered to have potential influence on the wind. were used in the feature selection…

research product

Intelligent estimation of wind farm performance with direct and indirect ‘point’ forecasting approaches integrating several NWP models

Reliable wind power forecasting is essential for profitably trading wind energy in the electricity market and efficiently integrating wind-generated electricity into the power grids. In this paper, we propose short- and medium-term wind power forecasting systems targeted to the Nordic energy market, which integrate inputs on the wind flow conditions from three numerical weather prediction sources. A point forecasting scheme is adopted, which forecasts the power at the individual turbine level. Both direct and indirect forecasting approaches are considered and compared. An automated machine-learning pipeline, built and optimized using genetic programming, is implemented for developing the pr…

research product