0000000001171172

AUTHOR

Andrecia Ramnath

showing 6 related works from this author

Unequal rapidity correlators in the dilute limit of JIMWLK

2019

We study unequal rapidity correlators in the stochastic Langevin picture of Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner (JIMWLK) evolution in the Color Glass Condensate effective field theory. We discuss a diagrammatic interpretation of the long-range correlators. By separately evolving the Wilson lines in the direct and complex conjugate amplitudes, we use the formalism to study two-particle production at large rapidity separations. We show that the evolution between the rapidities of the two produced particles can be expressed as a linear equation, even in the full nonlinear limit. We also show how the Langevin formalism for two-particle correlations reduces to a BFKL picture i…

PhysicsComplex conjugateNuclear TheoryStochastic processFOS: Physical sciencesPosition and momentum spacehiukkasfysiikka114 Physical sciencesNuclear Theory (nucl-th)Nonlinear systemHigh Energy Physics - PhenomenologyAmplitudeHigh Energy Physics - Phenomenology (hep-ph)Effective field theoryRapidityColor glassMathematical physics
researchProduct

JIMWLK and beyond: From concepts to observables

2016

Volume: 112 Host publication title: 6th International Conference on Physics Opportunities at an Electron-Ion Collider The Color Glass Condensate and its associated evolution equation, the JIMWLK equation have applications to many observables far beyond totally inclusive observables. The phenomenology is so rich that little has been done to explore beyond scaling behavior of correlators. We show first examples that exemplify the considerations necessary to access additional information both experimentally and theoretically and demonstrate that the Wilson line correlators appearing throughout make it imperative to consistently take into account that one is dealing with correlators of group el…

ta114Operations research010308 nuclear & particles physicsComputer sciencePhysicsQC1-999scalingCOLOR GLASS CONDENSATEObservable114 Physical sciences01 natural sciencesSTATESMALL X EVOLUTIONColor-glass condensateWilson loopTheoretical physicsODDERONevolution equation0103 physical sciencesEvolution equationcolor glass condensate010306 general physicsScalingN-CEPJ Web of Conferences
researchProduct

Unequal rapidity correlators in the dilute limit of the JIMWLK evolution

2019

We study unequal rapidity correlators in the stochastic Langevin picture of Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner (JIMWLK) evolution in the color glass condensate effective field theory. We discuss a diagrammatic interpretation of the long-range con elators. By separately evolving the Wilson lines in the direct and complex conjugate amplitudes, we use the formalism to study two-particle production at large rapidity separations. We show that the evolution between the rapidities of the two produced particles can be expressed as a linear equation, even in the full nonlinear limit. We also show how the Langevin formalism for two-particle correlations reduces to a Balitsky-Fadin…

COLLISIONSPosition and momentum spacehiukkasfysiikkafield theory114 Physical sciences01 natural sciencesColor-glass condensatenuclear physicsINFINITE-MOMENTUM0103 physical sciencesEQUATIONEffective field theorySCATTERINGRapidity010306 general physicsMathematical physicsPhysicsComplex conjugate010308 nuclear & particles physicsStochastic processCOLOR GLASS CONDENSATENONLINEAR GLUON EVOLUTIONNonlinear systemDIPOLE PICTUREkvanttikenttäteoriaydinfysiikkaLinear equationPhysical Review D
researchProduct

JIMWLK evolution of the odderon

2016

We study the effects of a parity-odd "odderon" correlation in JIMWLK renormalization group evolution at high energy. Firstly we show that in the eikonal picture where the scattering is described by Wilson lines, one obtains a strict mathematical upper limit for the magnitude of the odderon amplitude compared to the parity even pomeron one. This limit increases with N_c, approaching infinity in the infinite N_c limit. We use a systematic extension of the Gaussian approximation including both 2- and 3-point correlations which enables us to close the system of equations even at finite N_c. In the large-N_c limit we recover an evolution equation derived earlier. By solving this equation numeric…

SMALL-X EVOLUTIONWilson loopNuclear TheoryLARGE NUCLEIWilson linesFOS: Physical sciencesField (mathematics)114 Physical sciences01 natural sciencesHIGH-ENERGY SCATTERINGColor-glass condensateRENORMALIZATION-GROUPNuclear Theory (nucl-th)GLUON DISTRIBUTION-FUNCTIONSPomeronHigh Energy Physics - Phenomenology (hep-ph)Quantum mechanicsquantum chromodynamics0103 physical sciencesEQUATION010306 general physicsPhysicsta114evolution equations010308 nuclear & particles physicsScatteringEikonal equationHERA-DATAHigh Energy Physics::PhenomenologyCOLOR GLASS CONDENSATEodderonRenormalization groupHigh Energy Physics - PhenomenologyAmplitudeJIMWLKPA-COLLISIONSBK EVOLUTION
researchProduct

Finite Nc corrections in the Balitsky-Kovchegov equation at next-to-leading order

2021

Publisher Copyright: © owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). We study the finite-Nc corrections to the next-to-leading order (NLO) Balitsky-Kovchegov (BK) equation. This contains correlators of six Wilson lines, which we express in terms of the two-point function using the Gaussian approximation. Numerically, the effects of these finite-Nc corrections on the NLO BK equation are found to be smaller than the expected 1/Nc2 ∼ 10%. Corrections may be large for individual correlators, but have less of an influence on the shape of the amplitude as a function of the dipole size. There is a…

PhysicsDipoleAmplitudeQuantum electrodynamicsOrder (group theory)kvanttiväridynamiikkaRapidityFunction (mathematics)hiukkasfysiikka114 Physical sciencesGaussian approximation
researchProduct

Next-to-leading order Balitsky-Kovchegov equation beyond large Nc

2020

We calculate finite-Nc corrections to the next-to-leading order (NLO) Balitsky-Kovchegov (BK) equation. We find analytical expressions for the necessary correlators of six Wilson lines in terms of the two-point function using the Gaussian approximation. In a suitable basis, the problem reduces from the diagonalization of a six-by-six matrix to the diagonalization of a three-by-three matrix, which can easily be done analytically. We study numerically the effects of these finite-Nc corrections on the NLO BK equation. In general, we find that the finite-Nc corrections are smaller than the expected 1/N2c∼10%. The corrections may be large for individual correlators, but have less of an influence…

particle interactionsstrong interactionquantum chromodynamicshiukkasfysiikka
researchProduct