0000000001173545

AUTHOR

K. Deiglmayr

Structure and activity of the nitrate-reducing community in the rhizosphere of Lolium perenne and Trifolium repens under long-term elevated atmospheric pCO2

Rhizosphere soil was sampled in monocultures of Lolium perenne and Trifolium repens in June and October 2002, at two different nitrogen fertilisation levels (14 and 56 g N m−2 year−1) and under two pCO2 atmospheres (360 and 600 ppmv) at the Swiss FACE (Free Air Carbon dioxide Enrichment) site. Directly extracted soil DNA was analysed with restriction fragment length polymorphism (PCR-RFLP) by use of degenerated primers for the narG gene encoding the active site of the membrane-bound nitrate reductase. The corresponding enzyme activity of the nitrate reductase was determined colorimetrically after 24 h of anaerobic incubation. The narG PCR-RFLP fingerprints showed that the structure of the n…

research product

Impact of elevated CO2 on structure and activity of the nitrate-reducing community in grassland ecosystems

research product

Microbial succession of nitrate-reducing bacteria in the rhizosphere of Poa alpina across a glacier foreland in the Central Alps

International audience; Changes in community structure and activity of the dissimilatory nitrate-reducing community were investigated across a glacier foreland in the Central Alps to gain insight into the successional pattern of this functional group and the driving environmental factors. Bulk soil and rhizosphere soil of Poa alpina was sampled in five replicates in August during the flowering stage and in September after the first snowfalls along a gradient from 25 to 129 years after deglaciation and at a reference site outside the glacier foreland (> 2000 years deglaciated). In a laboratory-based assay, nitrate reductase activity was determined colorimetrically after 24 h of anaerobic inc…

research product

Abundance of narG , nirS , nirK , and nosZ Genes of Denitrifying Bacteria during Primary Successions of a Glacier Foreland

ABSTRACT Quantitative PCR of denitrification genes encoding the nitrate, nitrite, and nitrous oxide reductases was used to study denitrifiers across a glacier foreland. Environmental samples collected at different distances from a receding glacier contained amounts of 16S rRNA target molecules ranging from 4.9 × 10 5 to 8.9 × 10 5 copies per nanogram of DNA but smaller amounts of narG , nirK , and nosZ target molecules. Thus, numbers of narG , nirK , nirS , and nosZ copies per nanogram of DNA ranged from 2.1 × 10 3 to 2.6 × 10 4 , 7.4 × 10 2 to 1.4 × 10 3 , 2.5 × 10 2 to 6.4 × 10 3 , and 1.2 × 10 3 to 5.5 × 10 3 , respectively. The densities of 16S rRNA genes per gram of soil increased with…

research product

Functional stability of the nitrate-reducing community in grassland soils towards high nitrate supply

Abstract To study the effects of short-term fluctuation of nitrate concentrations on the nitrate-reducing community, repacked soil cores were amended with 0, 100 and 300 μ g NO 3 - ‐ N g - 1 soil and incubated for 3, 7 and 14 days, respectively. The nitrate reductase activity was determined in a laboratory-based enzyme assay. In parallel, the community structure of nitrate-reducing microorganisms was characterised by RFLP-PCR using the functional gene narG , which encodes the catalytic site of the membrane-bound nitrate reductase. The community structure remained constant over the experimental period indicating that this functional community is characterised by a high resistance towards flu…

research product