0000000001174495

AUTHOR

Felix Kling

showing 13 related works from this author

Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider

2020

Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these longlived particles (LLPs) can decay far from the interaction vertex of the primary proton–proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP…

HIGH-ENERGYbeyond the Standard Modellarge hadron colliderPhysics::Instrumentation and DetectorsPROTON-PROTON COLLISIONSPhysics beyond the Standard Modelbeyond the standard model01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)high-luminosity lhcHigh Energy Physics - Phenomenology (hep-ph)MAGNETIC MONOPOLESlong-lived [particle]high-energy collider experimentsdecay: vertexscattering [p p][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]long-lived particlesQCproposed [detector]Physicslifetimedark gauge forcesLarge Hadron ColliderCMSROOT-S=13 TEVroot-s=13 tevPhysicsnew physics: search forscale: electroweak interactionhep-phATLASelectroweak interaction [scale]vertex [decay]upgrade [detector]High Energy Physics - Experiment; High Energy Physics - Experiment; High Energy Physics - Phenomenologydetector: upgradeSettore FIS/02 - Fisica Teorica Modelli e Metodi Matematiciprimary [vertex]ddc:High Energy Physics - PhenomenologyCERN LHC CollLarge Hadron Colliderbaryon asymmetryvertex: primaryLHCcolliding beams [p p]exclusion limitspp collisionsParticle Physics - ExperimentsignatureNuclear and High Energy PhysicsParticle physicsp p: scatteringCERN LabPAIR PRODUCTIONcollider phenomenologyreviewFOS: Physical sciencesDARK GAUGE FORCES530search for [new physics]BARYON ASYMMETRY0103 physical sciencesddc:530010306 general physicsnumerical calculationsParticle Physics - PhenomenologyEXCLUSION LIMITSmagnetic monopolesPP COLLISIONS010308 nuclear & particles physicshep-exbackgroundbibliographyshowersMAJORANA NEUTRINOSCollisiontracksLHC-Bdetector: proposedhigh-luminosity LHCpair productionMATHUSLAPhysics and Astronomy[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]proton-proton collisionshigh-energymajorana neutrinosparticle: long-livedp p: colliding beamsPhysics BSMexperimental results
researchProduct

How deprotonation changes molecular self-assembly – an AFM study in liquid environment

2013

We study the influence of Alizarin Red S deprotonation on molecular self-assembly at the solid-liquid interface of the natural cleavage plane of calcite immersed in aqueous solution. To elucidate the adsorption details, we perform pH dependent high-resolution atomic force microscopy measurements. When Alizarin Red S is deposited onto calcite(10.4) in a liquid environment at an acidic pH of 5, weakly bound, ordered islands with a (3 x 3) superstructure are observed. A sharp structural transition is revealed when increasing the pH above 8. Above this pH, stable needle-like structures oriented along the [01.0] direction form on the surface. Comparing these results with potentiometric titration…

SuperstructureAqueous solutionChemistryPotentiometric titrationInorganic chemistryALIZARIN REDProtonationGeneral ChemistryCondensed Matter Physics530CrystallographyDeprotonationAdsorptionMolecular self-assemblySoft Matter
researchProduct

Adsorption Structures of Amino Acids on Calcite(104)

2015

Elucidating the interaction details of proteins with the most stable cleavage plane of calcite , namely calcite(104), is of great importance for understanding the physicochemical mechanisms behind biomineralisation. In this context, amino acids are generally believed to serve as suitable model molecules, as they constitute the basic building blocks of proteins. In this work, we present a non-contact atomic force microscopy (NC-AFM) investigation of the adsorption of five proteinogenic amino acids on calcite(104) under ultra-high vacuum (UHV) conditions. For studying the structures formed from comparatively large amino acids, enantiopure tryptophan, tyrosine and aspartic acid molecules are d…

Alaninechemistry.chemical_classificationCalcitechemistry.chemical_compoundCrystallographychemistryGlycineTryptophanSide chainContext (language use)Chirality (chemistry)Amino acid
researchProduct

Structure and Dynamics of the Quasi-Liquid Layer at the Surface of Ice from Molecular Simulations

2018

We characterized the structural and dynamical properties of the quasi-liquid layer (QLL) at the surface of ice by molecular dynamics simulations with a thermodynamically consistent water model. Our simulations show that for three low-index ice surfaces only the outermost molecular layer presents short-range and mid-range disorder and is diffusive. The onset temperature for normal diffusion is much higher than the glass temperature of supercooled water, although the diffusivity of the QLL is higher than that of bulk water at the corresponding temperature. The underlying subsurface layers impose an ordered template, which produces a regular patterning of the ice/water interface at any tempera…

Work (thermodynamics)TechnologyMaterials sciencephysics.chem-phFOS: Physical sciencesCondensed Matter - Soft Condensed Matter010402 general chemistryThermal diffusivity01 natural sciencesPhysical ChemistryMolecular dynamicsEngineeringPhysics - Chemical Physics0103 physical sciencesWater modelPhysical and Theoretical Chemistry010306 general physicsSupercoolingPhysics::Atmospheric and Oceanic PhysicsChemical Physics (physics.chem-ph)cond-mat.softComputational Physics (physics.comp-ph)0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCharacterization (materials science)General EnergyChemical physicsphysics.comp-phChemical SciencesSoft Condensed Matter (cond-mat.soft)Glass transitionLayer (electronics)Physics - Computational Physics
researchProduct

Increasing the Templating Effect on a Bulk Insulator Surface: From a Kinetically Trapped to a Thermodynamically More Stable Structure

2016

Molecular self-assembly, governed by the subtle balance between intermolecular and molecule- surface interactions, is generally associated with the thermodynamic ground state, while the competition between kinetics and thermodynamics during its formation is often neglected. Here, we present a simple model system of a benzoic acid derivative on a bulk insulator surface. Combining high-resolution non-contact atomic force microscopy experiments and density functional theory, we characterize the structure and the thermodynamic stability of a set of temperature-dependent molecular phases formed by 2,5-dihydroxybenzoic acid molecules, self- assembled on the insulating calcite (10.4) surface. We d…

Phase transitionKineticsIntermolecular force02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology53001 natural sciences0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialschemistry.chemical_compoundGeneral EnergychemistryComputational chemistryChemical physicsMoleculeDensity functional theoryChemical stabilityPhysical and Theoretical Chemistry0210 nano-technologyGround stateBenzoic acid
researchProduct

Studying neutrinos at the LHC: FASER and its impact to the cosmic-ray physics

2021

Studies of high energy proton interactions have been basic inputs to understand the cosmic-ray spectra observed on the earth. Yet, the experimental knowledge with controlled beams has been limited. In fact, uncertainties of the forward hadron production are very large due to the lack of experimental data. The FASER experiment is proposed to measure particles, such as neutrinos and hypothetical dark-sector particles, at the forward location of the 14 TeV proton-proton collisions at the LHC. As it corresponds to 100-PeV proton interactions in fixed target mode, a precise measurement by FASER would provide information relevant for PeV-scale cosmic rays. By studying three flavor neutrinos with …

PhysicsAstrophysics and AstronomyParticle physicsLarge Hadron ColliderPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::PhenomenologyHigh Energy Physics::ExperimentCosmic rayNeutrinoProceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021)
researchProduct

Physics beyond colliders at CERN: beyond the Standard Model working group report

2019

The Physics Beyond Colliders initiative is an exploratory study aimed at exploiting the full scientific potential of the CERN's accelerator complex and scientific infrastructures through projects complementary to the LHC and other possible future colliders. These projects will target fundamental physics questions in modern particle physics. This document presents the status of the proposals presented in the framework of the Beyond Standard Model physics working group, and explore their physics reach and the impact that CERN could have in the next 10–20 years on the international landscape.

HIGH-ENERGYHigh energyaxionsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsPhysics beyond the Standard Model01 natural sciencesHigh Energy Physics - Experimentdark matter: couplingHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)photon: coupling[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Detectors and Experimental Techniquesphysics.ins-detPHOTON VETO DETECTORdark sectorPhysicsLarge Hadron Colliderneutrino: pair productionnew physics: search forlepton: flavor: violationdark matter: pair productionhep-phInstrumentation and Detectors (physics.ins-det)photon: invisible decayNEUTRAL HEAVY-LEPTONSHigh Energy Physics - PhenomenologyLIGHTCERN LHC Collphoton: mixingSystems engineeringParticle Physics - ExperimentNuclear and High Energy PhysicsCERN LabacceleratorPHI-MESON DECAYSExploratory researchFOS: Physical sciences530dark matterStandard ModelELECTRIC-DIPOLE MOMENTacceleratorsVECTOR GAUGE BOSONSEARCH0103 physical sciencesDARK-MATTERddc:530K: semileptonic decay[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]particle physics010306 general physicsvector boson: postulated particleCP CONSERVATIONbeyond standard ModelParticle Physics - Phenomenologylepton: universalityphoton: hidden sectorbeyond standard Model; dark matter; dark sector; axions; particle physics; acceleratorshep-ex010308 nuclear & particles physicscoupling constantCERN SPSlandscapeAccelerators and Storage Ringsdark matter: mediation[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Fundamental physicsPhysics::Accelerator Physicsaxion: solarJournal of Physics G: Nuclear and Particle Physics
researchProduct

Self-assembly of Organic Molecules on Insulating Surfaces

2015

Molecular self-assembly is known to provide a powerful tool for creating functional structures, with the ultimate structure and functionality encoded in the molecular building blocks. Upon molecule deposition onto surfaces, functional structures have been created ranging from defect-free, highly symmetric two-dimensional layers to complex assemblies with dedicated functionality. Especially organic molecules play a key role for molecular self-assembly due to their impressive structural flexibility and the high degree of control by chemical synthesis. Furthermore, the surface itself provides another exciting dimension: adjusting the subtle balance between intermolecular and molecule-surface i…

Kelvin probe force microscopeFlexibility (engineering)Materials scienceIntermolecular forceMoleculeNanotechnologySelf-assemblySubstrate (electronics)Electronic structureSurface energy
researchProduct

Snowmass Neutrino Frontier: Neutrino Interaction Cross Sections (NF06) Topical Group Report

2022

A thorough understanding of neutrino cross sections in a wide range of energies is crucial for the successful execution of the entire neutrino physics program. In order to extract neutrino properties, long-baseline experiments need an accurate determination of neutrino cross sections within their detector(s). Since very few of the needed neutrino cross sections across the energy spectrum are directly measured, we emphasize the need for theoretical input and indirect measurements such as electron scattering, which would complement direct measurements. In this report we briefly summarize the current status of our knowledge of the neutrino cross sections and articulate needs of the experiments…

neutrino: detectorneutrino: energyDUNEelectron: scatteringneutrino: atmosphereneutrino: energy spectrumfar detectorneutrino: scatteringneutrino: supernovachannel cross section: energy dependenceneutrino: interactiondeep underground detectoractivity report
researchProduct

The FASER Detector

2022

FASER, the ForwArd Search ExpeRiment, is an experiment dedicated to searching for light, extremely weakly-interacting particles at CERN's Large Hadron Collider (LHC). Such particles may be produced in the very forward direction of the LHC's high-energy collisions and then decay to visible particles inside the FASER detector, which is placed 480 m downstream of the ATLAS interaction point, aligned with the beam collisions axis. FASER also includes a sub-detector, FASER$\nu$, designed to detect neutrinos produced in the LHC collisions and to study their properties. In this paper, each component of the FASER detector is described in detail, as well as the installation of the experiment system …

High Energy Physics - Experiment (hep-ex)Physics - Instrumentation and Detectorshep-exFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)Detectors and Experimental Techniquesphysics.ins-detParticle Physics - ExperimentHigh Energy Physics - Experiment
researchProduct

Tau neutrinos in the next decade: from GeV to EeV

2022

Tau neutrinos are the least studied particle in the standard model. This whitepaper discusses the current and expected upcoming status of tau neutrino physics with attention to the broad experimental and theoretical landscape spanning long-baseline, beam-dump, collider, and astrophysical experiments. This whitepaper was prepared as a part of the NuTau2021 Workshop.

HIGH-ENERGY NEUTRINOSMAGNETIC-MOMENTAstrophysics and AstronomyNuclear and High Energy PhysicsRADIO PULSESPhysics::Instrumentation and Detectorstau neutrinosFOS: Physical sciencesCHERENKOV LIGHT YIELDGeV530High Energy Physics - Experimenttau neutrino theorySubatomär fysikHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)neutrino experimentsSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530Particle Physics - PhenomenologyAIR-SHOWERSLEPTON FLAVORastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)hep-exPhysicshep-phtau neutrinos; neutrino experiments; tau neutrino theorylandscapeCOSMIC-RAYSHigh Energy Physics - PhenomenologyQUANTUM-GRAVITYCHARGED-PARTICLES[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]beam dumpPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentLORENTZ VIOLATION[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - High Energy Astrophysical PhenomenaParticle Physics - Experiment
researchProduct

Experiments and Facilities for Accelerator-Based Dark Sector Searches

2022

This paper provides an overview of experiments and facilities for accelerator-based dark matter searches as part of the US Community Study on the Future of Particle Physics (Snowmass 2021). Companion white papers to this paper present the physics drivers: thermal dark matter, visible dark portals, and new flavors and rich dark sectors.

Physics - Instrumentation and Detectorsflavorhep-exFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)Astrophysics::Cosmology and Extragalactic Astrophysicsdark matterHigh Energy Physics - ExperimentthermalHigh Energy Physics - Experiment (hep-ex)Physics::Accelerator PhysicsDetectors and Experimental Techniquesphysics.ins-detParticle Physics - Experiment
researchProduct

The FASER Detector

2022

FASER, the ForwArd Search ExpeRiment, is an experiment dedicated to searching for light, extremely weakly-interacting particles at CERN's Large Hadron Collider (LHC). Such particles may be produced in the very forward direction of the LHC's high-energy collisions and then decay to visible particles inside the FASER detector, which is placed 480 m downstream of the ATLAS interaction point, aligned with the beam collisions axis. FASER also includes a sub-detector, FASER$ν$, designed to detect neutrinos produced in the LHC collisions and to study their properties. In this paper, each component of the FASER detector is described in detail, as well as the installation of the experiment system an…

High Energy Physics - Experiment (hep-ex)FOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)
researchProduct