0000000001183367

AUTHOR

Thanh T Nguyen

Assessing the Effects of VEGF Releasing Microspheres on the Angiogenic and Foreign Body Response to a 3D Printed Silicone-Based Macroencapsulation Device.

Macroencapsulation systems have been developed to improve islet cell transplantation but can induce a foreign body response (FBR). The development of neovascularization adjacent to the device is vital for the survival of encapsulated islets and is a limitation for long-term device success. Previously we developed additive manufactured multi-scale porosity implants, which demonstrated a 2.5-fold increase in tissue vascularity and integration surrounding the implant when compared to a non-textured implant. In parallel to this, we have developed poly(ε-caprolactone-PEG-ε-caprolactone)-b-poly(L-lactide) multiblock copolymer microspheres containing VEGF, which exhibited continued release of bioa…

research product

Vascular Endothelial Growth Factor-Releasing Microspheres Based on Poly(ε-Caprolactone-PEG-ε-Caprolactone)-b-Poly(L-Lactide) Multiblock Copolymers Incorporated in a Three-Dimensional Printed Poly(Dimethylsiloxane) Cell Macroencapsulation Device

Pancreatic islet transplantation is a promising advanced therapy that has been used to treat patients suffering from diabetes type 1. Traditionally, pancreatic islets are infused via the portal vein, which is subsequently intended to engraft in the liver. Severe immunosuppressive treatments are necessary, however, to prevent rejection of the transplanted islets. Novel approaches therefore have focused on encapsulation of the islets in biomaterial implants which can protect the islets and offer an organ-like environment. Vascularization of the device’s surface is a prerequisite for the survival and proper func- tioning of transplanted pancreatic islets. We are pursuing a prevascularization s…

research product