0000000001188417
AUTHOR
A. Fratangelo
Johnson-Nyquist Noise Effects in Neutron Electric-Dipole-Moment Experiments
Magnetic Johnson-Nyquist noise (JNN) originating from metal electrodes, used to create a static electric field in neutron electric-dipole-moment (nEDM) experiments, may limit the sensitivity of measurements. We present here the first dedicated study on JNN applied to a large-scale long-measurement-time experiment with the implementation of a co-magnetometry. In this study, we derive surface- and volume-averaged root-mean-square normal noise amplitudes at a certain frequency bandwidth for a cylindrical geometry. In addition, we model the source of noise as a finite number of current dipoles and demonstrate a method to simulate temporal and three-dimensional spatial dependencies of JNN. The c…
Measurement of the permanent electric dipole moment of the neutron
We present the result of an experiment to measure the electric dipole moment (EDM) of the neutron at the Paul Scherrer Institute using Ramsey’s method of separated oscillating magnetic fields with ultracold neutrons. Our measurement stands in the long history of EDM experiments probing physics violating time-reversal invariance. The salient features of this experiment were the use of a 199Hg comagnetometer and an array of optically pumped cesium vapor magnetometers to cancel and correct for magnetic-field changes. The statistical analysis was performed on blinded datasets by two separate groups, while the estimation of systematic effects profited from an unprecedented knowledge of the magne…
Mapping of the magnetic field to correct systematic effects in a neutron electric dipole moment experiment
Experiments dedicated to the measurement of the electric dipole moment of the neutron require outstanding control of the magnetic-field uniformity. The neutron electric dipole moment (nEDM) experiment at the Paul Scherrer Institute uses a Hg199 co-magnetometer to precisely monitor temporal magnetic-field variations. This co-magnetometer, in the presence of field nonuniformity, is, however, responsible for the largest systematic effect of this measurement. To evaluate and correct that effect, offline measurements of the field nonuniformity were performed during mapping campaigns in 2013, 2014, and 2017. We present the results of these campaigns, and the improvement the correction of this eff…