0000000001190045

AUTHOR

A Mukherjee

showing 4 related works from this author

Higgs boson studies at the Tevatron

2013

We combine searches by the CDF and D0 Collaborations for the standard model Higgs boson with mass in the range 90-200 GeV/c2 produced in the gluon-gluon fusion, WH, ZH, tt̄H, and vector boson fusion processes, and decaying in the H→bb̄, H→W+W-, H→ZZ, H→τ+τ-, and H→γγ modes. The data correspond to integrated luminosities of up to 10 fb-1 and were collected at the Fermilab Tevatron in pp̄ collisions at √s=1.96 TeV. The searches are also interpreted in the context of fermiophobic and fourth generation models. We observe a significant excess of events in the mass range between 115 and 140 GeV/c2. The local significance corresponds to 3.0 standard deviations at mH=125 GeV/c2, consistent with the…

FERMILAB TEVATRON COLLIDERNuclear and High Energy PhysicsParticle physicsproton antiproton collisions; FERMILAB TEVATRON COLLIDER; Standard Model Higgs boson; BROKEN SYMMETRIESSTANDARD MODELP(P)OVER-BAR COLLISIONSTevatronFOS: Physical sciencesContext (language use)ATLAS DETECTORddc:500.2Standard Model Higgs boson7. Clean energy01 natural sciencesStandard ModelVector bosonHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)SEARCH0103 physical sciencesBibliography[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]BROKEN SYMMETRIESFermilab010306 general physicsPhysicsHIGGS BOSONB-JET IDENTIFICATIONLarge Hadron ColliderPP COLLISIONS010308 nuclear & particles physics4. EducationHigh Energy Physics::PhenomenologyROOT-S=1.96 TEVPARTON DISTRIBUTIONSExperimental High Energy PhysicsHiggs bosonproton antiproton collisionsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGSYMMETRIESCDFB-JET IDENTIFICATION; STANDARD MODEL; ATLAS DETECTOR; PP COLLISIONS; P(P)OVER-BAR COLLISIONS; PARTON DISTRIBUTIONS; ROOT-S=1.96 TEV; SEARCH; LHC; SYMMETRIESHigh Energy Physics::ExperimentLHC
researchProduct

Cardiovascular Efficacy and Safety of Bococizumab in High-Risk Patients

2017

Item does not contain fulltext BACKGROUND: Bococizumab is a humanized monoclonal antibody that inhibits proprotein convertase subtilisin-kexin type 9 (PCSK9) and reduces levels of low-density lipoprotein (LDL) cholesterol. We sought to evaluate the efficacy of bococizumab in patients at high cardiovascular risk. METHODS: In two parallel, multinational trials with different entry criteria for LDL cholesterol levels, we randomly assigned the 27,438 patients in the combined trials to receive bococizumab (at a dose of 150 mg) subcutaneously every 2 weeks or placebo. The primary end point was nonfatal myocardial infarction, nonfatal stroke, hospitalization for unstable angina requiring urgent re…

MaleSTATIN THERAPYAnticholesteremic Agents/adverse effectsAntibodieVascular damage Radboud Institute for Health Sciences [Radboudumc 16]Injections Subcutaneous/adverse effects030204 cardiovascular system & hematologyBococizumablaw.inventionPCSK90302 clinical medicineRandomized controlled triallawRisk FactorsGENETIC-VARIANTSCardiovascular DiseaseMonoclonalAnticholesteremic Agent030212 general & internal medicineMyocardial infarctionTreatment FailureHumanizedProprotein Convertase 9/antagonists & inhibitorsMedicine(all)Antibodies; Antibodies Monoclonal Humanized; Anticholesteremic Agents; Cardiovascular Diseases; Cholesterol LDL; Double-Blind Method; Female; Follow-Up Studies; Humans; Hypercholesterolemia; Injections Subcutaneous; Lipids; Male; Middle Aged; Proprotein Convertase 9; Risk Factors; Treatment Failure; Medicine (all)Anticholesteremic AgentsMedicine (all)PCSK9 InhibitorsAntibodies; antibodies monoclonal humanized; anticholesteremic agents; cardiovascular diseases; cholesterol LDL; double-blind method; female; follow-up studies; humans; hypercholesterolemia; injections subcutaneous; lipids; male; middle aged; proprotein convertase 9; risk factors; treatment failure; medicine (all)Vascular damage Radboud Institute for Molecular Life Sciences [Radboudumc 16]General MedicineLipidMiddle AgedLipids3. Good healthLDL/bloodMulticenter StudyCholesterolTRIALSCholesterol LDL/bloodCardiovascular DiseasesAntibodies Monoclonal Humanized/adverse effectsanticholesteremic agentsRandomized Controlled Trialsubcutaneouslipids (amino acids peptides and proteins)FemaleProprotein Convertase 9Cardiovascular Diseases/prevention & controlREDUCING LIPIDSHumanmedicine.medical_specialtyanimal structuresInjections SubcutaneousHypercholesterolemiaHypercholesterolemia/drug therapyPlaceboAntibodies Monoclonal HumanizedInjections SubcutaneouAntibodiesLDLInjectionsFollow-Up StudielipidsEVENTS03 medical and health sciencesantibodies monoclonal humanizedDouble-Blind MethodInternal medicinemedicineJournal ArticleHumansComparative StudyMETAANALYSISAlirocumabbusiness.industryUnstable anginaLipids/bloodPCSK9Risk FactorfungiAntibodies/bloodCholesterol LDLta3121medicine.diseaseSurgerycardiovascular diseasesEvolocumabREDUCTIONHumanized/adverse effectsSubcutaneous/adverse effectsbusiness[SDV.MHEP]Life Sciences [q-bio]/Human health and pathologyFollow-Up Studies
researchProduct

Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

2017

On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anticoincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is $5.0\times 10^{-8}$. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short gamma-ray bursts. We use the ob…

AstrofísicaGravitacióneutron star: binaryclose [binaries]Astronomy[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]BATSE OBSERVATIONSgamma-ray burst: generalEQUIVALENCE PRINCIPLEEXTENDED EMISSIONastro-ph.HE; astro-ph.HEAstrophysicsKilonovageneral [gamma-ray burst]01 natural sciences7. Clean energyGeneral Relativity and Quantum Cosmologyphoton: velocityPROMPT EMISSIONLIGOclose gamma-ray burst: general gravitational waves [binaries]gravitational wave010303 astronomy & astrophysicsGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)BURST SPECTRAQCQBPhysicsastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)binaries: closeGRBEQUATION-OF-STATEviolation: Lorentzgamma ray: emissiongravitational wavesAstrophysics - High Energy Astrophysical PhenomenaGWradiation: electromagneticAfterglow Light CurvesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysicsgamma ray: burstinvariance: LorentzGW GRB LIGO Virgo Fermi BNSGLASTOptical Afterglows0103 physical sciencesgamma ray: detectorBinaries: close; gamma-ray burst: general; gravitational wavesSTFCFermi010308 nuclear & particles physicsGravitational waveVirgogravitational radiationRCUKAstronomy and AstrophysicsAstronomy and Astrophysictime delaysensitivityShapiro delayLIGORedshiftNeutron starVIRGOPhysics and AstronomyHOST GALAXYCPT VIOLATION13. Climate actiongravitationSpace and Planetary ScienceLUMINOSITY FUNCTIONVIEWING ANGLEbinaries: close; gamma-ray burst: general; gravitational waves; Astronomy and Astrophysics; Space and Planetary ScienceBNSspectrometerGamma-ray burst[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]redshift: measuredFermi Gamma-ray Space TelescopeAstrophysical Journal Letters
researchProduct

Combination of measurements of the top-quark pair production cross section from the Tevatron Collider

2014

We combine six measurements of the inclusive top-quark pair (tt̄) production cross section (σtt̄) from data collected with the CDF and D0 detectors at the Fermilab Tevatron with proton-antiproton collisions at s=1.96TeV. The data correspond to integrated luminosities of up to 8.8fb-1. We obtain a value of σtt̄=7.60±0.41pb for a top-quark mass of mt=172.5GeV. The contributions to the uncertainty are 0.20 pb from statistical sources, 0.29 pb from systematic sources, and 0.21 pb from the uncertainty on the integrated luminosity. The result is in good agreement with the standard model expectation of 7.35-0.33+0.28pb at next-to-next-to-leading order and next-to-next-to leading logarithms in pert…

Top quarkP(P)OVER-BAR COLLISIONSTevatron7. Clean energylaw.inventionPhysics Particles & FieldsHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)law[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]HADRON COLLIDERSFERMILABFermilabNuclear ExperimentQuantum chromodynamicsPhysicsLarge Hadron ColliderPhysicsP(P)OVER-BAR COLLISIONS; ROOT-S=1.96 TEV; PARTON DISTRIBUTIONS; HADRON COLLIDERS; LEADING ORDER; T(T)OVER-BAR; DETECTOR; LHC; QCD; FERMILABPerturbative QCD3. Good healthROOT-S=1.96 TEVPhysical SciencesComputingMethodologies_DOCUMENTANDTEXTPROCESSINGLHCT(T)OVER-BARParticle physicsNuclear and High Energy PhysicsFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstronomy & AstrophysicsMASSNuclear physicsSEARCHColliderParticle PhysicsDETECTORAstrophysics::Galaxy AstrophysicsScience & Technologyhep-exLEADING ORDERHigh Energy Physics::PhenomenologyTop quarkQCDP(P)OVER-BAR COLLISIONS; T(T)OVER-BAR; DETECTOR; SEARCH; MASSPair productionPARTON DISTRIBUTIONSExperimental High Energy PhysicsCollider PhysicsCDFHigh Energy Physics::ExperimentParticle Physics; Collider Physics; Top quark
researchProduct