0000000001196385

AUTHOR

L. Milano

showing 33 related works from this author

Calibration of advanced Virgo and reconstruction of the gravitational wave signal h(t) during the observing run O2

2018

In August 2017, Advanced Virgo joined Advanced LIGO for the end of the O2 run, leading to the first gravitational waves detections with the three-detector network. This paper describes the Advanced Virgo calibration and the gravitational wave strain h(t) reconstruction during O2. The methods are the same as the ones developed for the initial Virgo detector and have already been described in previous publications, this paper summarizes the differences and emphasis is put on estimating systematic uncertainties. Three versions of the h(t) signal have been computed for the Virgo O2 run, an online version and two post-run reprocessed versions with improved detector calibration and reconstruction…

O2 observation runPhysics and Astronomy (miscellaneous)AstronomyAstrophysicsdetector: networkVIRGO: calibration01 natural sciencesGeneral Relativity and Quantum CosmologyPhysics Particles & FieldsHigh Energy Physics::Theorydetector: calibrationLIGOmirrorgravitational wavePhysicsQuantum Science & TechnologyPhysicsDetectorphotonAstrophysics::Instrumentation and Methods for AstrophysicsReconstruction algorithmMassless particleAmplitudeCalibration Advanced Virgo O2Physical SciencesCalibration[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Advanced VirgoAstrophysics - Instrumentation and Methods for Astrophysicson-linereconstructioninterferometergravitational wave calibration reconstruction photon calibrator Virgo O2 observation runPhysics MultidisciplinaryFOS: Physical sciencesO2General Relativity and Quantum Cosmology (gr-qc)Astronomy & Astrophysicsgravitational radiation: direct detectionParticle detectorGeneral Relativity and Quantum Cosmology0103 physical sciencesCalibrationcalibration; gravitational wave; O2 observation run; photon calibrator; reconstruction; Virgo; Physics and Astronomy (miscellaneous)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Science & Technology010308 nuclear & particles physicsGravitational waveVirgogravitational radiationcalibration; gravitational wave; O2 observation run; photon calibrator; reconstruction; Virgocalibrationphoton calibratorLIGOgravitational radiation detectordetector: sensitivity* Automatic Keywords *network
researchProduct

Centrality, rapidity and transverse momentum dependence of J/ψ suppression in Pb–Pb collisions at sNN=2.76 TeV

2014

The inclusive J/.nuclear modification factor (R-AA) in Pb-Pb collisions at root(NN)-N-S = 2.76TeVhas been measured by ALICE as a function of centrality in the e+ e-decay channel at mid-rapidity (| y| < 0.8) and as a function of centrality, transverse momentum and rapidity in the + -decay channel at forward-rapidity (2.5 < y < 4). The J/.yields measured in Pb-Pb are suppressed compared to those in ppcollisions scaled by the number of binary collisions. The RAAintegrated over a centrality range corresponding to 90% of the inelastic Pb-Pb cross section is 0.72 - 0.06(stat.) - 0.10(syst.) at mid-rapidity and 0.58 - 0.01(stat.) - 0.09(syst.) at forward-rapidity. At low transverse momentum, signi…

Nuclear physicsPhysicsNuclear and High Energy PhysicsParticle physicsTransverse momentumModification factorRapidityCentralityLower energyCharm quarkPhysics Letters B
researchProduct

Searches for transverse momentum dependent flow vector fluctuations in Pb-Pb and p-Pb collisions at the LHC

2017

The measurement of azimuthal correlations of charged particles is presented for Pb-Pb collisions at $\sqrt{s_{\rm NN}}=$ 2.76 TeV and p-Pb collisions at $\sqrt{s_{\rm NN}}=$ 5.02 TeV with the ALICE detector at the CERN Large Hadron Collider. These correlations are measured for the second, third and fourth order flow vector in the pseudorapidity region $|��|&lt;0.8$ as a function of centrality and transverse momentum $p_{\rm T}$ using two observables, to search for evidence of $p_{\rm T}$-dependent flow vector fluctuations. For Pb-Pb collisions at 2.76 TeV, the measurements indicate that $p_{\rm T}$-dependent fluctuations are only present for the second order flow vector. Similar results hav…

HEAVY-ION COLLISIONSnucl-extransverse momentum dependenceCOLLABORATIONangular correlation [charged particle]High Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)ALICEmodel: hydrodynamicstransport theory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear ExperimentNuclear ExperimentMonte CarloHeavy Ion Experiments; RELATIVISTIC NUCLEAR COLLISIONS; HEAVY-ION COLLISIONS; QUARK-GLUON; PLASMA; COLLECTIVE FLOW; COLLABORATIONPLASMAfluctuation [geometry]flow: anisotropygeometry: fluctuationQUARK-GLUONCERN LHC CollHeavy Ion Experiments; Nuclear and High Energy PhysicsflowRELATIVISTIC NUCLEAR COLLISIONSHeavy Ion ExperimentQuark-Gluon PlasmaParticle Physics - Experiment2760 GeV/nucleon5020 GeV/nucleonNuclear and High Energy PhysicsCERN LabCOLLECTIVE FLOWFOS: Physical sciencestransverse momentum[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]vector [fluctuation]Heavy Ion Experimentsscattering [heavy ion][ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]factorizationlcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530hydrodynamics [model]Nuclear Physics - Experimentnumerical calculationsinitial stateleadHeavy Ion Experiments Nuclear and High Energy Physics.hep-exboundary conditionrapiditycorrelationviscositylcsh:QC770-798High Energy Physics::Experimentp nucleusentropy: densitycharged particle: angular correlationexperimental results
researchProduct

Status of Advanced Virgo

2017

The LIGO and the Virgo collaborations have recently announced the first detections of Gravitational Waves. Due to their weak amplitude, Gravitational Waves are expected to produce a very small effect on free-falling masses, which undergo a displacement of the order of 10-18 m for a Km-scale mutual distance. This discovery showed that interferometric detectors are suitable to reveal such a feeble effect, and therefore represent a new tool for astronomy, astrophysics and cosmology in the understanding of the Universe. To better reconstruct the position of the Gravitational Wave source and increase the signal-to-noise ratio of the events by means of multiple coincidence, a network of detectors…

cosmological modeldetector: performanceVirgo LIGO gravitational waveAstronomyinterferometerQC1-999detector: networkgravitational radiation: direct detection01 natural sciencesCoincidenceCosmologyPhysics and Astronomy (all)0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]LIGO010306 general physicsSettore FIS/01Physics010308 nuclear & particles physicsGravitational wavePhysicsDetectorgravitational radiationAstrophysics::Instrumentation and Methods for AstrophysicsAstronomygravitational radiation detectorLIGOdetector: sensitivityInterferometryVIRGOAmplitudePhysics and Astronomygravitational radiation: emission[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Harmonic decomposition of two particle angular correlations in Pb–Pb collisions at sNN=2.76 TeV

2012

Angular correlations between unidentified charged trigger (t) and associated (a) particles are measured by the ALICE experiment in Pb-Pb collisions at root s(NN) = 2.76 TeV for transverse momenta 0.25 p(T)(a). The shapes of the pair correlation distributions are studied in a variety of collision centrality classes between 0 and 50% of the total hadronic cross section for particles in the pseudorapidity interval |eta| 0.8, and are referred to as "long-range correlations". Fourier components V-n Delta equivalent to are extracted from the long-range azimuthal correlation functions. If particle pairs are correlated to one another through their individual correlation to a common symmetry plane, …

PhysicsNuclear and High Energy Physics010308 nuclear & particles physicsHadronElementary particle01 natural sciencesDecompositionDistribution (mathematics)Correlation functionPseudorapidity0103 physical sciencesHarmonicParticleAtomic physicsNuclear Experiment010306 general physicsPhysics Letters B
researchProduct

Inclusive quarkonium production at forward rapidity in pp collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usep…

2016

We report on the inclusive production cross sections of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{J}/\psi }$$\end{document}J/ψ, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\psi (\mathrm{2S})}$$\end{document}ψ(2S), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepac…

Regular Article - Experimental PhysicsThe European Physical Journal. C, Particles and Fields
researchProduct

GW190521: A Binary Black Hole Merger with a Total Mass of 150  M⊙

2020

LIGO Scientific Collaboration and Virgo Collaboration: et al.

AstronomyGeneral Physics and Astronomydetector: networkAstrophysicsGravitational waves; Binary black holes Intermediate mass black holes01 natural sciencesGeneral Relativity and Quantum Cosmologygravitational waves; black holesGW190521 BBHIntermediate mass black holesLIGO10. No inequalityQCQBSettore FIS/01astro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsPAIR-INSTABILITYSettore FIS/05Physicsstatistical analysis: BayesianSupernovaPhysical SciencesPhysique des particules élémentaires[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical PhenomenaGravitational wavedata analysis methodBinary black holes Intermediate mass black holesgr-qcPhysics MultidisciplinaryFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Physics and Astronomy(all)Gravitation and AstrophysicsGravitational wavespair-instabilitySettore FIS/05 - Astronomia e AstrofisicaBinary black holeBinary black holesNeutron starsgravitational wavessupernova0103 physical sciences010306 general physicsLuminosity distanceSTFCGW190521Science & Technology9. Industry and infrastructureGravitational wavegravitational radiationRCUKblack hole: massgravitational waves black holegravitational radiation detectorLIGORedshiftBlack holewave: modelVIRGOblack hole: binaryIntermediate-mass black holegravitational radiation: emissionBBH[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

2017

Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signal-to-noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, {\it narrow-band} analyses methods have been developed, allowing a fully coherent search for gravitational waves from known …

Gravitational-wave observatoryPhysics and Astronomy (miscellaneous)Astronomy01 natural sciencesrotationneutron starsGeneral Relativity and Quantum Cosmologygravitational waves; LIGO; stochastic gravitational-waveLIGOneutron star010303 astronomy & astrophysicsGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)QCpulsarQBPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Gravitational Waves neutron stars advanced detectors narrow-band searchDetectorAmplitude[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical PhenomenaasymmetryCoherence (physics)young pulsarinterferometerneutron star: spinFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)proper motionadvanced detectorsGravitational wavesPulsar0103 physical sciencesddc:530Gravitational Waves010308 nuclear & particles physicsGravitational wavegravitational radiation530 PhysikLIGOgravitational radiation detectorComputational physicscoherencedetector: sensitivityNeutron starelectromagneticPhysics and AstronomyGravitational waves; Pulsarnarrow-band searchDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]discovery
researchProduct

Charged jet cross sections and properties in proton-proton collisions at $\sqrt{s}=7$ TeV

2015

The differential charged jet cross sections, jet fragmentation distributions, and jet shapes are measured in minimum bias proton-proton collisions at centre-of-mass energy $\sqrt{s}=7$ TeV using the ALICE detector at the LHC. Jets are reconstructed from charged particle momenta in the mid-rapidity region using the sequential recombination $k_{\rm T}$ and anti-$k_{\rm T}$ as well as the SISCone jet finding algorithms with several resolution parameters in the range $R=0.2$ to $0.6$. Differential jet production cross sections measured with the three jet finders are in agreement in the transverse momentum ($p_{\rm T}$) interval $20<p_{\rm T}^{\rm jet,ch}<100$ GeV/$c$. They are also consistent w…

shapes:Kjerne- og elementærpartikkelfysikk: 431 [VDP]parton distributionsMonte Carlo methodP(P)OVER-BAR COLLISIONSALICE Charged jet proton-proton 7 TeVATLAS DETECTOR01 natural sciencesSpectral lineHigh Energy Physics - Experimentdifferential charged jet cross sectionENERGYHigh Energy Physics - Experiment (hep-ex)ALICEFragmentation (mass spectrometry)Nuclear and High Energy Physics differential charged jet cross sectionfragmentation[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)ROOT-S(NN)=2.76 TEVNuclear ExperimentNuclear Experimentroot-s(nn)=2.76 tevatlas detectorPhysicsLarge Hadron Collidercross sectionPhysicsDetectorCharged particle3. Good health:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]charged jetsPRIRODNE ZNANOSTI. Fizika.:Nuclear and elementary particle physics: 431 [VDP]SHAPESTransverse momentumHADRON-COLLISIONSFRAGMENTATIONpp collisionsenergyParticle physicsNuclear and High Energy PhysicsAstrophysics::High Energy Astrophysical PhenomenaCharged jetVDP::Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431FOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]114 Physical sciencestransverse-momentumNuclear physicsMinimum bias(P)OVER-BAR-P COLLISIONS P(P)OVER-BAR COLLISIONS PP COLLISIONS PARTON DISTRIBUTIONS TRANSVERSE-MOMENTUM SHAPES ALGORITHM ENERGY0103 physical sciences7 TeVNuclear Physics - Experimentproton-protonALGORITHM010306 general physics(p)over-bar-p collisionsPP COLLISIONSta114(P)OVER-BAR-P COLLISIONSVDP::Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431010308 nuclear & particles physics:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]TRANSVERSE-MOMENTUMNATURAL SCIENCES. Physics.(p)over-bar-p collisions ; parton distributions ; transverse-momentum ; root-s(nn)=2.76 tev ; hadron-collisions ; atlas detector ; pp collisions ; fragmentation ; shapes ; energy ; charged jet ; cross section ; proton-proton ; 7 TeVhadron-collisionsPARTON DISTRIBUTIONSALICE; Charged jet; proton-proton; 7 TeVproton-proton collisionsHigh Energy Physics::Experimentcharged jet
researchProduct

The advanced Virgo longitudinal control system for the O2 observing run

2020

Following a successful period of data-taking between 2006 and 2011, the Virgo gravitational-wave detector was taken offline for a major upgrade. The changes made to the instrument significantly increased the complexity of the control systems and meant that an extended period of commissioning was required to reach a sensitivity appropriate for science data-taking. This commissioning period was completed in July of 2017 and the second-generation Advanced Virgo detector went on to join the Advanced LIGO detectors in the O2 science run in August of the same year. The upgraded detector was approximately twice as sensitive to binary neutron star mergers as the first-generation instrument. During …

neutron star: binaryPhysics::Instrumentation and DetectorsAstronomycavity: opticalSuspended optical cavities01 natural sciencesGravitational wave detectorsoff-lineGravitational wave detectors; Interferometer; Suspended optical cavities; Control loopsControl loopSuspended optical cavitieLIGOInterferometer010303 astronomy & astrophysicsdetectorsSettore FIS/01Physics[PHYS]Physics [physics]DetectorAstrophysics::Instrumentation and Methods for AstrophysicsGravitational wave detectors Interferometer Suspended optical cavities Control loopsGravitational wave detectorUpgrade[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]upgradecontrol systemGravitational wavelongitudinalAstrophysics::High Energy Astrophysical PhenomenainterferometerAstrophysics::Cosmology and Extragalactic Astrophysicscontrol loops; gravitational wave detectors; interferometer; suspended optical cavitiesgravitational radiation: direct detectionGeneral Relativity and Quantum CosmologySettore FIS/05 - Astronomia e AstrofisicaBinary black holebinary: coalescence0103 physical sciencesControl loops[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010308 nuclear & particles physicsGravitational wavegravitational radiationAstronomyAstronomy and AstrophysicssensitivityLIGOgravitational radiation detectordetector: sensitivityNeutron star* Automatic Keywords *VIRGOblack hole: binaryControl systemgravitational radiation: emission[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube

2014

Made available in DSpace on 2022-04-29T07:21:49Z (GMT). No. of bitstreams: 0 Previous issue date: 2014-11-17 We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007-2010. These include parts of the 2005-2007 run and the 2009-2010 run for LIGO-Virgo, and IceCube's observation periods with 22, 59 and 79 strings. We find no significant coincident events, and use the search results to derive upper limits on the rate of joint sources for a range of source emission parameters. For the optimistic assumption of …

MECHANISMPhysics and Astronomy (miscellaneous)AstrophysicsFOLLOW-UP OBSERVATIONSASTROPHYSICAL SOURCESIceCubeneutrinoDetection of gravitational waveGravitational waves neutrinoObservatory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]QCLIGO Scientific CollaborationQBPhysicsGAMMA-RAY BURSTS[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsASTRONOMYNuclear and High Energy Physics; Physics and Astronomy (miscellaneous)NEUTRINOSNeutrino detectorComputingMethodologies_DOCUMENTANDTEXTPROCESSINGNeutrinoSENSITIVITYGIANT FLARENuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]95.85.RyMUON NEUTRINOSAstrophysics::High Energy Astrophysical PhenomenaAstrophysics::Cosmology and Extragalactic AstrophysicsACCELERATIONGravitational wavesGeneral Relativity and Quantum CosmologyINSTABILITIESSettore FIS/05 - Astronomia e AstrofisicaCORE-COLLAPSE SUPERNOVAE[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530SDG 7 - Affordable and Clean EnergyCORE-COLLAPSEDETECTOR/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyGravitational wave95.85.SzMAGNETIZED NEUTRON-STARS[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]AstronomyTRANSIENTS95.85.Sz; 95.85.RyRELATIVISTIC STARSLIGOPhysics and Astronomy[ SDU.ASTR.HE ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Gamma-ray burstEMISSIONEnergy (signal processing)
researchProduct

Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network

2019

Gravitational wave astronomy has been firmly established with the detection of gravitational waves from the merger of ten stellar mass binary black holes and a neutron star binary. This paper reports on the all-sky search for gravitational waves from intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. The search uses three independent algorithms: two based on matched filtering of the data with waveform templates of gravitational wave signals from compact binaries, and a third, model-independent algorithm that employs no signal model for the incoming signal. No intermediate mass black hole binary event was detected in this sear…

binary: massneutron star: binaryAstronomybinary: angular momentumAstrophysicsdetector: network01 natural sciencesGeneral Relativity and Quantum CosmologyPhysics Particles & FieldsLIMITSclustersLIGOgravitational waveGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)QCQBastro-ph.HEPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01black hole: spinPhysicsintermediate mass black hole binarieNumerical relativityGeneral relativitygravitational wavesgravitational waves; intermediate mass black hole binaries; Advanced LIGO and VirgoPhysical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical PhenomenastarsGeneral relativitygr-qcAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesalternative theories of gravitySTARS; CLUSTERS; LIMITSAstrophysics::Cosmology and Extragalactic AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)Astronomy & Astrophysicsgravitational radiation: direct detectionGeneral Relativity and Quantum CosmologySettore FIS/05 - Astronomia e AstrofisicaBinary black hole0103 physical sciencesddc:530010306 general physicsAstrophysics::Galaxy AstrophysicsSTFCScience & Technology010308 nuclear & particles physicsGravitational waveAdvanced LIGO and Virgointermediate mass black hole binariesRCUKGravitational Wave Physicsblack hole: massMass ratiobinary: compact04.80.NnLIGOgravitational radiation detectorNeutron starVIRGOblack hole: binaryIntermediate-mass black holerelativity theorygravitational radiation: emission95.55.Ymmass ratioDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik07.05.Kflimits[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]CLUSTERSSTARSGravitational waves Black holes (astronomy) Gravitational self force
researchProduct

Measurement of pion, kaon and proton production in proton–proton collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym…

2015

The measurement of primary \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi ^{\pm }$$\end{document}π±, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^{\pm }$$\end{document}K±, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrs…

Regular Article - Experimental PhysicsThe European Physical Journal. C, Particles and Fields
researchProduct

Production of K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy}…

2016

The production of K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{*}$$\end{document}∗(892)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{0}$$\end{document}0 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage…

Regular Article - Experimental PhysicsThe European Physical Journal. C, Particles and Fields
researchProduct

Suppression of charged particle production at large transverse momentum in central Pb–Pb collisions at sNN=2.76 TeV

2011

Inclusive transverse momentum spectra of primary charged particles in Pb-Pb collisions at root s(NN) = 2.76 TeV have been measured by the ALICE Collaboration at the LHC. The data are presented for central and peripheral collisions, corresponding to 0-5% and 70-80% of the hadronic Pb-Pb cross section. The measured charged particle spectra in |eta| < 0.8 and 0.3 < p(T) < 20 GeV/c are compared to the expectation in pp collisions at the same root s(NN), scaled by the number of underlying nucleon-nucleon collisions. The comparison is expressed in terms of the nuclear modification factor R-AA. The result indicates only weak medium effects (R-AA approximate to 0.7) in peripheral collisions. In cen…

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsHadronModification factor01 natural sciencesCentral regionSpectral lineCharged particleNuclear physicsCross section (physics)0103 physical sciencesTransverse momentumNuclear Experiment010306 general physicsPhysics Letters B
researchProduct

Two-pion Bose–Einstein correlations in central Pb–Pb collisions at sNN=2.76 TeV

2011

The first measurement of two-pion Bose-Einstein correlations in central Pb-Pb collisions at root(NN)-N-S = 2.76 TeV at the Large Hadron Collider is presented. We observe a growing trend with energy now not only for the longitudinal and the outward but also for the sideward pion source radius. The pion homogeneity volume and the decoupling time are significantly larger than those measured at RHIC. (C) 2010 CERN. Published by Elsevier B.V. All rights reserved.

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsNuclear TheoryBose–Einstein correlationsDecoupling (cosmology)01 natural sciencesNuclear physicsPion0103 physical sciencesHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsPhysics Letters B
researchProduct

A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007

2013

A search for high-energy neutrinos coming from the direction of the Sun has been performed using the data recorded by the ANTARES neutrino telescope during 2007 and 2008. The neutrino selection criteria have been chosen to maximize the selection of possible signals produced by the self-annihilation of weakly interacting massive particles accumulated in the centre of the Sun with respect to the atmospheric background. After data unblinding, the number of neutrinos observed towards the Sun was found to be compatible with background expectations. The 90% CL upper limits in terms of spin-dependent and spin-independent WIMP-proton cross-sections are derived and compared to predictions of two sup…

AstrofísicaEXPLOSIONSHigh energyPhotonPOINT SOURCESSUPERCONDUCTING COSMIC STRINGSGravitational waves / experimentsGravitational waves/experimentsAstrophysics01 natural scienceshigh energy neutrinosgravitational wavesgravitational waves / experiment010303 astronomy & astrophysicsQCmedia_commonLine (formation)QBPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)GAMMA-RAY BURSTSdark matter detectorsGravitational waves / experiments; Neutrino astronomy; Astronomy and Astrophysicshigh energy neutrinos[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for Astrophysicsgravitational waves; gravitational waves / experiments; neutrino astronomy; high energy neutrinos; high energy neutrinosgravitational wavesgravitational wavesparticle physics - cosmology connectionNeutrino astronomyCOSMIC STRINGSRELATIVISTIC JETSNeutrinoAstrophysics - High Energy Astrophysical Phenomenasupersymmetry and cosmology[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]gravitational waves / experiments; neutrino astronomyTELESCOPEmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaSCIENCE RUNFOS: Physical sciencesddc:500.2GAMMA-RAY BURSTS; CORE-COLLAPSE SUPERNOVAE; SUPERCONDUCTING COSMIC STRINGS; MAGNETAR GIANT FLARES; SCIENCE RUN; RELATIVISTIC JETS; POINT SOURCES; BLACK-HOLES; LOCAL-RATE; TELESCOPEGravitational wavesGeneral Relativity and Quantum CosmologyCORE-COLLAPSE SUPERNOVAESettore FIS/05 - Astronomia e AstrofisicaCoincidentneutrino experiments0103 physical sciences010306 general physicsMAGNETAR GIANT FLARESBLACK-HOLESHigh Energy Astrophysical PhenomenaGravitational waveAstronomy[ PHYS.ASTR.HE ] Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astronomy and AstrophysicsDRIVENUniverseLIGOGIANT FLARESLOCAL-RATEFISICA APLICADALUMINOSITYRADIATIONHigh Energy Physics::Experiment[ SDU.ASTR.HE ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Experiments[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Direct photon production in Pb–Pb collisions atsNN=2.76 TeV

2016

Direct photon production at mid-rapidity in Pb–Pb collisions at √sNN = 2.76 TeV was studied in the transverse momentum range 0.9<pT<14 GeV/c. Photons were detected with the highly segmented electromagnetic calorimeter PHOS and via conversions in the ALICE detector material with the e+e− pair reconstructed in the central tracking system. The results of the two methods were combined and direct photon spectra were measured for the 0–20%, 20–40%, and 40–80% centrality classes. For all three classes, agreement was found with perturbative QCD calculations for pT≳5 GeV/c. Direct photon spectra down to pT≈1 GeV/c could be extracted for the 20–40% and 0–20% centrality classes. The significance of th…

Quantum chromodynamicsPhysicsNuclear and High Energy PhysicsParticle physicsPhoton010308 nuclear & particles physicsHadronBremsstrahlungPerturbative QCD01 natural sciencesParticle identificationNuclear physics0103 physical sciencesRapidityNuclear Experiment010306 general physicsGlauberPhysics Letters B
researchProduct

Precision measurement of the mass difference between light nuclei and anti-nuclei

2015

The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. This force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons and anti-deuterons, and $^{3}{\rm He}$ and $^3\overline{\rm He}…

electronQuarkspectroscopyAntiparticleParticle physicsPhysics of Elementary Particles and FieldsCPT symmetryStrong interactionNuclear TheoryantunucleiFOS: Physical sciencesAntiprotonGeneral Physics and Astronomy[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]ElectronHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Physics and Astronomy (all)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Physics - ExperimentNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentAntihydrogenSpectroscopyNuclear Physicsantihydrogenmass measurementQuantum chromodynamicsPhysicsanti-nucleita114SPECTROSCOPY; ANTIHYDROGEN; ANTIPROTON; ELECTRONmass difference nuclei antunucleiHigh Energy Physics::Phenomenologymass differenceNATURAL SCIENCES. Physics.3. Good healthGluonPRIRODNE ZNANOSTI. Fizika.antiprotonnucleiQuark–gluon plasmamassmass difference ; nuclei ; anti-nuclei ; ALICE ; CERNHigh Energy Physics::ExperimentNucleon
researchProduct

Study of cosmic ray events with high muon multiplicity using the ALICE detector at the CERN Large Hadron Collider

2016

ALICE is one of four large experiments at the CERN Large Hadron Collider near Geneva, specially designed to study particle production in ultra-relativistic heavy-ion collisions. Located 52 meters underground with 28 meters of overburden rock, it has also been used to detect muons produced by cosmic ray interactions in the upper atmosphere. In this paper, we present the multiplicity distribution of these atmospheric muons and its comparison with Monte Carlo simulations. This analysis exploits the large size and excellent tracking capability of the ALICE Time Projection Chamber. A special emphasis is given to the study of high multiplicity events containing more than 100 reconstructed muons a…

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]Physics::Instrumentation and Detectorshigh muon multiplicity01 natural sciences7. Clean energyHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)ALICECERN[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)Nuclear Experimentcosmic rayPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Large Hadron ColliderDetectorVDP::Kjerne- og elementærpartikkelfysikk: 431ENERGY-SPECTRUMPRIRODNE ZNANOSTI. Fizika.:Nuclear and elementary particle physics: 431 [VDP]VDP::Nuclear and elementary particle physics: 431ComputingMethodologies_DOCUMENTANDTEXTPROCESSINGcosmic rays detectorsAstrophysics - High Energy Astrophysical PhenomenaAstrophysics and Astronomy[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]FOS: Physical sciencescosmic ray experimentCosmic ray[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]EXTENSIVE AIR-SHOWERScosmic ray ; high muon multiplicity ; ALICE ; CERNBUNDLES114 Physical sciencesREGIONNuclear physicsALICE detectorcosmic rays0103 physical sciencesMultiplicity (chemistry)cosmic rays detector010306 general physicsatmospheric muonsMuon010308 nuclear & particles physicscosmic ray experiments; cosmic rays detectors;EXTENSIVE AIR-SHOWERS; ENERGY-SPECTRUM; BUNDLES; REGION; LEPAstronomy and AstrophysicsLEP115 Astronomy Space scienceNATURAL SCIENCES. Physics.13. Climate actioncosmic ray experiments; cosmic rays detectors; Astronomy and AstrophysicsHigh Energy Physics::Experimentcosmic ray experiments
researchProduct

Beauty production in pp collisions at s=2.76 TeV measured via semi-electronic decays

2014

The ALICE Collaboration at the LHC reports measurement of the inclusive production cross section of electrons from semi-leptonic decays of beauty hadrons with rapidity |y|<0.8 and transverse momentum 1<pT<10 GeV/c, in pp collisions at s=2.76 TeV. Electrons not originating from semi-electronic decay of beauty hadrons are suppressed using the impact parameter of the corresponding tracks. The production cross section of beauty decay electrons is compared to the result obtained with an alternative method which uses the distribution of the azimuthal angle between heavy-flavour decay electrons and charged hadrons. Perturbative QCD predictions agree with the measured cross section within the exper…

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsHadronPerturbative QCDElectron01 natural sciences7. Clean energyNuclear physicsPhase space0103 physical sciencesQuark–gluon plasmaHigh Energy Physics::ExperimentRapidityImpact parameterNuclear Experiment010306 general physicsPhysics Letters B
researchProduct

Measurement of quarkonium production at forward rapidity in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfo…

2014

The inclusive production cross sections at forward rapidity of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{J}/\psi }$$\end{document}J/ψ, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\psi (\mathrm{2S})}$$\end{document}ψ(2S), \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} …

Regular Article - Experimental PhysicsThe European Physical Journal. C, Particles and Fields
researchProduct

Centrality dependence of charged jet production in p–Pb collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepac…

2016

Measurements of charged jet production as a function of centrality are presented for  p–Pb  collisions recorded at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s_\mathrm {NN}}= 5.02$$\end{document}sNN=5.02 TeV with the ALICE detector. Centrality classes are determined via the energy deposit in neutron calorimeters at zero degree, close to the beam direction, to minimise dynamical biases of the selection. The corresponding number of participants or binary nucleon–nucleon collisions is determined based on…

Regular Article - Theoretical PhysicsThe European Physical Journal. C, Particles and Fields
researchProduct

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

2017

On August 17, 2017 at 12-41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×104 years. We infer the component masses of the binary to be between 0.86 and 2.26 M, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60 M, with the total mass of the system 2.74-0.01+0.04M. The source was localized within a sky region of 28 deg2 (90% probabili…

neutron star: binary[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]X-ray binaryADVANCED LIGOAstrophysicsKilonovagravitational waves; LIGO; binary neutron star inspiralspin01 natural sciencesLIGOGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)QCQBHigh Energy Astrophysical Phenomena (astro-ph.HE)Electromagnetic observationsGravitational-wave signals3100 General Physics and AstronomyPoint MassesAstrophysics - High Energy Astrophysical PhenomenaBlack-Hole MergersBinary neutron starsBlack HolesX-ray bursterCoalescing BinariesAstrophysics::High Energy Astrophysical Phenomena10192 Physics InstituteGeneral Relativity and Quantum Cosmology (gr-qc)Gravity wavesGravitational wavesNeutron starsPhysics and Astronomy (all)ddc:530Electromagnetic spectraNeutrons010308 nuclear & particles physicsVirgoGamma raysAstronomyRCUKVIRGOelectromagneticgravitational radiation: emissionStellar black holeGamma-ray burst[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Compact Binariesbinary: masscosmological modelAstronomyGeneral Physics and AstronomyAstrophysicsneutron starsGamma ray burstsGeneral Relativity and Quantum CosmologyGravitational wave detectorsUniverseDENSE MATTER010303 astronomy & astrophysicsastro-ph.HEPhysicsSignal to noise ratioSettore FIS/01 - Fisica SperimentaleGravitational effectsFalse alarm rateEQUATION-OF-STATEMergers and acquisitionsgravitational waves[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]530 PhysicsMERGERSGeneral Relativity and Quantum Cosmology; General Relativity and Quantum Cosmology; astro-ph.HEFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysicsgamma ray: burstgravitational radiation: direct detectionMerging[ PHYS.GRQC ] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]GAMMA-RAY BURSTLIGO (Observatory)binary: coalescenceGravitational waves neutron stars gamma-ray burst LIGO Virgo0103 physical sciencesGW151226MASSESSTFCAstrophysics::Galaxy AstrophysicsPhysiqueGravitational wavegravitational radiationPULSARgravitational radiation detectorNeutron starPhysics and AstronomygravitationRADIATIONDewey Decimal Classification::500 | Naturwissenschaften::530 | Physikbinary neutron star inspiralSignal detectionPHYS REV LETT PHYSICAL REVIEW LETTERS
researchProduct

The ALICE Collaboration

2009

The production of mesons containing strange quarks (KS, φ) and both singly and doubly strange baryons ( , , and − + +) are measured at mid-rapidity in pp collisions at √ s = 0.9 TeV with the ALICE experiment at the LHC. The results are obtained from the analysis of about 250 k minimum bias events recorded in 2009. Measurements of yields (dN/dy) and transverse momentum spectra at mid-rapidity for inelastic pp collisions are presented. For mesons, we report yields (〈dN/dy〉) of 0.184 ± 0.002(stat.) ± 0.006(syst.) for KS and 0.021 ± 0.004(stat.) ± 0.003(syst.) for φ. For baryons, we find 〈dN/dy〉 = 0.048 ± 0.001(stat.) ± 0.004(syst.) for , 0.047 ± 0.002(stat.) ± 0.005(syst.) for and 0.0101 ± 0.0…

PhysicsStrange quarkNuclear and High Energy PhysicsLarge Hadron ColliderMeson010308 nuclear & particles physics7. Clean energy01 natural sciencesSpectral lineVisual artsNuclear physicsBaryonMinimum biasTransverse momentum0103 physical sciencesHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary AstrophysicsALICE (propellant)Nuclear Experiment010306 general physics
researchProduct

Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3a

2022

Abbott, R., et al. (LIGO and VIRGO Collaboration)

neutron star: binaryGravitational waves(678)ELECTROMAGNETIC COUNTERPARTSBinary numberAstrophysics01 natural sciencesLIGOHigh-Energy Phenomena and Fundamental PhysicsQCSUPERNOVAQBHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01education.field_of_study[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]Black holesSettore FIS/0506 humanities and the artsGRBEnergy InjectionSearch for gravitational wave transients associated to GRBs - Fermi and Swift satellitesAFTERGLOWPhysical SciencesRELATIVISTIC JETSAstrophysics - High Energy Astrophysical PhenomenaSwiftGravitational waveBlack-Hole330Evolutiongr-qcGamma Ray Burst LIGO Virgo Gravitational WavesAstrophysics::High Energy Astrophysical PhenomenaGeneral Relativity and Quantum Cosmology (gr-qc)0603 philosophy ethics and religionGravitational-wave astronomyNeutron starsENERGY INJECTIONCORE-COLLAPSEeducationGamma-ray burstScience & TechnologyCore-CollapseVirgoRCUKAstronomy and AstrophysicstriggerLuminosity FunctionDewey Decimal Classification::500 | Naturwissenschaften::520 | Astronomie KartographieGamma Ray BurstSpace and Planetary ScienceBLACK-HOLEddc:520gravitational wave astronomyGravitational wave astronomyGamma-ray burst[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]LIGO(920)Fermi Gamma-ray Space TelescopeAstronomyAstrophysicsGeneral Relativity and Quantum Cosmologyneutron starsENERGYGravitational wave detectorsGamma-ray bursts(629)Neutron Stars Mergers Gravitational Waves010303 astronomy & astrophysicsgravitational waves; gamma ray bursts; LIGO; Virgo; Fermi; SwiftCompact binary stars(283)astro-ph.HEPhysicscompact binary starsgamma-ray burstsgamma-ray bursts ; gravitational waves; LIGO; Virgogravitational waves060302 philosophy[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]PRECURSOR ACTIVITYGravitational wave astronomy(675)Gamma-ray burstsGW_HIGHLIGHT[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PopulationCompact binary starssatelliteFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstronomy & Astrophysicsgamma ray: burstMASS1STGLASTGamma-ray bursts; Gravitational wave astronomy; Gravitational waves; Gravitational wave detectors0103 physical sciencesSTFCFermigravitational waves; gamma-ray bursts; LIGO; Virgo; Fermi; SwiftGravitational wavegravitational radiationgamma ray burstsgamma-ray burts--black holesLIGOEVOLUTIONOBSERVING RUNNeutron stars(1108)Neutron starPhysics and Astronomy[SDU]Sciences of the Universe [physics]LUMINOSITY FUNCTIONBlack holes(162)INJECTIONEMISSION
researchProduct

Measurement of electrons from heavy-flavour hadron decays in p–Pb collisions at sNN=5.02TeV

2016

The production of electrons from heavy-flavour hadron decays was measured as a function of transverse momentum (pT) in minimum-bias p–Pb collisions at √sNN = 5.02 TeV using the ALICE detector at the LHC. The measurement covers the pT interval 0.5 < pT < 12 GeV/c and the rapidity range −1.065 < ycms < 0.135 in the centre-of-mass reference frame. The contribution of electrons from background sources was subtracted using an invariant mass approach. The nuclear modification factor RpPb was calculated by comparing the pT-differential invariant cross section in p–Pb collisions to a pp reference at the same centre-of-mass energy, which was obtained by interpolating measurements at √s = 2.76 TeV an…

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsHadronQuarkoniumNuclear matter01 natural sciences7. Clean energyParticle identificationNuclear physics0103 physical sciencesQuark–gluon plasmaHigh Energy Physics::ExperimentInvariant massRapidityNuclear Experiment010306 general physicsPhysics Letters B
researchProduct

Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo

2019

We present the results of targeted searches for gravitational-wave transients associated with gamma-ray bursts during the second observing run of Advanced LIGO and Advanced Virgo, which took place from 2016 November to 2017 August. We have analyzed 98 gamma-ray bursts using an unmodeled search method that searches for generic transient gravitational waves and 42 with a modeled search method that targets compact-binary mergers as progenitors of short gamma-ray bursts. Both methods clearly detect the previously reported binary merger signal GW170817, with p-values of <9.38 10-6 (modeled) and 3.1 10-4 (unmodeled). We do not find any significant evidence for gravitational-wave signals associate…

Burst astrophysicAstrofísicaneutron star: binary010504 meteorology & atmospheric sciencesBinary numberAstrophysics01 natural sciencesLIGOQCSUPERNOVArelativistic jetsQBHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01counterpartGRBGravitational waves (678)Physical SciencesRELATIVISTIC JETSAstrophysics - High Energy Astrophysical PhenomenaGravitational waveGravitationstarsblack-holeAstrophysics::High Energy Astrophysical PhenomenaGeneral Relativity and Quantum Cosmology (gr-qc)precursor activityGravitational wavesSettore FIS/05 - Astronomia e AstrofisicasupernovaCORE-COLLAPSEGamma-ray burstGravitational wave sourcesScience & TechnologyVirgoRCUKAstronomy and AstrophysicsHigh energy astrophysics (739)RedshiftDewey Decimal Classification::500 | Naturwissenschaften::520 | Astronomie Kartographiedetector: sensitivityVIRGOSpace and Planetary Sciencegravitational radiation: emissionBLACK-HOLEddc:520Gravitational wave astronomyGamma-ray burst[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]STARSGravitacióAstronomySignalGeneral Relativity and Quantum CosmologyBurst astrophysicslocalizationemission010303 astronomy & astrophysicsPhysicsDetectorGamma-ray bursts (629)[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Gravitational wave sourcePRECURSOR ACTIVITYGamma-ray burstsLIGO (920)High energy astrophysicsdata analysis methodBurst astrophysics (187)FOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysicsgamma ray: burstAstronomy & AstrophysicsMASSgravitational radiation: direct detectionGravitational wave astronomy Gravitational wave sources LIGO; Gravitational waves Gamma-ray bursts Burst astrophysics High energy astrophysicsGravitational wave astronomy (675)electromagnetic field: production0103 physical sciencesnumerical calculationsGRB; gravitational waves; LIGO; VirgoSTFC0105 earth and related environmental sciencesgravitational wavesneutron starsGravitational waveCOUNTERPARTgravitational radiationLIGOcore-collapsegravitational radiation detectorGravitational wave sources (677)radiationNeutron starPhysics and AstronomymassRADIATIONEMISSIONGravitational wave astronomy; Gravitational wave sources; LIGO; Gravitational waves; Gamma-ray bursts; Burst astrophysics; High energy astrophysics
researchProduct

Energy dependence of the transverse momentum distributions of charged particles in pp collisions measured by ALICE

2013

Differential cross sections of charged particles in inelastic pp collisions as a function of $p_{\rm T}$ have been measured at $\sqrt{s}=$ 0.9, 2.76 and 7 TeV at the LHC. The $p_{\rm T}$ spectra are compared to NLO-pQCD calculations. Though the differential cross section for an individual $\sqrt{s}$ cannot be described by NLO-pQCD, the relative increase of cross section with $\sqrt{s}$ is in agreement with NLO-pQCD. Based on these measurements and observations, procedures are discussed to construct pp reference spectra at $\sqrt{s} =$ 2.76 and 5.02 TeV up to $p_{\rm T}$ = 50 GeV/$c$ as required for the calculation of the nuclear modification factor in nucleus-nucleus and proton-nucleus coll…

:Kjerne- og elementærpartikkelfysikk: 431 [VDP]Physics and Astronomy (miscellaneous)heavy ion collisionsNuclear Theory01 natural sciences7. Clean energySpectral lineHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)pp collisionALICEpp collisions; transverse momentum; ALICE[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)transverse momentum distributionNuclear ExperimentNuclear ExperimentPhysicsLarge Hadron Collidertransverse momentum; pp; ALICE; charged particlesPhysicsCharged particle3. Good health:Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431 [VDP]:Nuclear and elementary particle physics: 431 [VDP]Transverse momentumLhcDiffractionpp collisionsParticle Physics - ExperimentRegular Article - Experimental PhysicsVDP::Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431particle productionFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]transverse momentumtransverse momentum distribution; PP COLLISIONSNuclear physicsRoot-S(Nn)=2.76 TevCross section (physics)0103 physical sciencesNuclear Physics - ExperimentPb-Pb Collisions010306 general physicsEngineering (miscellaneous)SuppressionALICE experiment; particle production; heavy ion collisionsVDP::Mathematics and natural scienses: 400::Physics: 430::Nuclear and elementary particle physics: 431010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyTransverse momentum distributions:Matematikk og naturvitenskap: 400::Fysikk: 430::Kjerne- og elementærpartikkelfysikk: 431 [VDP]ALICE experimentFunction (mathematics)Proton-Proton Collisionsp-p collisionHigh Energy Physics::ExperimentALICE (propellant)Energy (signal processing)
researchProduct

Measurement of visible cross sections in proton-lead collisions at √sNN= 5.02 TeV in van der Meer scans with the ALICE detector

2014

In 2013, the Large Hadron Collider provided proton-lead and lead-proton collisions at the center-of-mass energy per nucleon pair $\sqrt{s_{\rm{NN}}}=5.02$ TeV. Van der Meer scans were performed for both configurations of colliding beams, and the cross section was measured for two reference processes, based on particle detection by the T0 and V0 detectors, with pseudo-rapidity coverage $4.6<\eta< 4.9$, $-3.3<\eta<-3.0$ and $2.8<\eta< 5.1$, $-3.7<\eta<-1.7$, respectively. Given the asymmetric detector acceptance, the cross section was measured separately for the two configurations. The measured visible cross sections are used to calculate the integrated luminosity of the proton-lead and lead-…

ProtonNuclear Theorylarge detector systems for particle and astroparticle physicsLarge detector systems for particle and astroparticle physics; Particle tracking detec- tors; Heavy-ion detectors01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Particle tracking detectorsparticle tracking detectors[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Neutron detectionNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentInstrumentationMathematical PhysicsPhysicsLarge Hadron ColliderLuminosity (scattering theory)PhysicsDetectorLuminosity measurement3. Good healthPRIRODNE ZNANOSTI. Fizika.Large detector systems for particle and astroparticle physics Particle tracking detec- torNucleonParticle Physics - ExperimentLarge detector systems for particle and astroparticle physics ; Particle tracking detectors ; Heavy-ion detectorsParticle physicsParticle tracking detec- torsInstrumentationHeavy-ion detectorsFOS: Physical sciencesLarge detector systems for particle and astroparticle physics; Particle tracking detectors; Heavy-ion detectors[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear physicsCross section (physics)p-Pb collisions at the LHC0103 physical sciencesNuclear Physics - Experiment010306 general physics010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicsALICE experimentLarge detector systems for particle and astroparticle physics Particle tracking detec- tors; Heavy-ion detectorsNATURAL SCIENCES. Physics.heavy-ion detectorsInstrumentation; Mathematical PhysicsPhysics::Accelerator PhysicsHigh Energy Physics::Experiment
researchProduct

A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing R…

2019

We present a search for prompt gamma-ray counterparts to compact binary coalescence gravitational wave (GW) candidates from Advanced LIGO's first observing run (O1). As demonstrated by the multimessenger observations of GW170817/GRB 170817A, electromagnetic and GW observations provide complementary information about the astrophysical source and, in the case of weaker candidates, may strengthen the case for an astrophysical origin. Here we investigate low-significance GW candidates from the O1 compact-binary coalescence searches using the Fermi Gamma-ray Burst Monitor (GBM), leveraging its all-sky and broad energy coverage. Candidates are ranked and compared to background to measure signific…

AstrofísicaGravitacióAstronomyAstrophysics::High Energy Astrophysical Phenomenagamma-ray burst: generalFOS: Physical sciencesAstrophysicsAstronomy & Astrophysicsgeneral [gamma-ray burst]01 natural sciencesCoincidenceCoincident0103 physical sciences010306 general physics010303 astronomy & astrophysicsgravitational waveSTFCQCQBHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01Physicsastro-ph.HEScience & TechnologySolar flareGravitational wavegamma-ray burst: general; gravitational waves; Astronomy and Astrophysics; Space and Planetary ScienceRCUKAstronomy and AstrophysicsAstronomy and AstrophysicLIGOPhysics and Astronomygravitational wavesSpace and Planetary SciencePhysical Sciencesgamma-ray burst: general; gravitational wavesgeneral; gravitational waves; Astronomy and Astrophysics; Space and Planetary Science [gamma-ray burst]False alarmAstrophysics - High Energy Astrophysical PhenomenaGamma-ray burst[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Fermi Gamma-ray Space Telescope
researchProduct

Development of a 3D CZT detector prototype for Laue Lens telescope

2010

We report on the development of a 3D position sensitive prototype suitable as focal plane detector for Laue lens telescope. The basic sensitive unit is a drift strip detector based on a CZT crystal, (similar to 19x8 mm(2) area, 2.4 mm thick), irradiated transversally to the electric field direction. The anode side is segmented in 64 strips, that divide the crystal in 8 independent sensor (pixel), each composed by one collecting strip and 7 (one in common) adjacent drift strips. The drift strips are biased by a voltage divider, whereas the anode strips are held at ground. Furthermore, the cathode is divided in 4 horizontal strips for the reconstruction of the third interaction position coord…

CDTE DETECTORSPhysicsPhysics::Instrumentation and Detectorsbusiness.industryDetectorVoltage dividerGamma ray spectroscopySTRIPSCZT detectorCZT detectors 3D detectors Laue lensCathodeParticle detectorlaw.inventionAnodeLens (optics)TelescopeOpticsHard X- and soft gamma-ray astronomy3D imagingDrift striplawCDZNTEbusiness
researchProduct

Search for GW signals associated with GRBs

2021

We present the results of targeted searches for gravitational-wave transients associated with gamma-ray bursts during the second observing run of Advanced LIGO and Advanced Virgo, which took place from 2016 November to 2017 August. We have analyzed 98 gamma-ray bursts using an unmodeled search method that searches for generic transient gravitational waves and 42 with a modeled search method that targets compact-binary mergers as progenitors of short gamma-ray bursts. Both methods clearly detect the previously reported binary merger signal GW170817, with p-values of <9.38x10^-6^ (modeled) and 3.1x10^-4^ (unmodeled). We do not find any significant evidence for gravitational-wave signals assoc…

Astrophysics and AstronomyGamma-ray astronomyhigh energy astrophysicsAstrophysics::High Energy Astrophysical PhenomenaPhysicsAstrophysics::Cosmology and Extragalactic Astrophysicsstellar astronomyGamma ray burstsGravitational wavesCosmologyobservational astronomyGamma ray astronomyGamma-ray burstsAstrophysical ProcessesNatural Sciences
researchProduct