0000000001197189
AUTHOR
Marjo Haarala
Large-scale nonsmooth optimization : variable metric bundle method with limited memory
Marjo Haarala kehitti väitöskirjatutkimuksessaan rajoitetun muistin kimppumenetelmän, jota voidaan hyödyntää useilla tieteen ja tekniikan aloilla, kuten muun muassa ultraäänikuvien kuvankäsittelyssä. Uudella menetelmällä voidaan ratkaista suuria epäsileitä optimointitehtäviä ja se soveltuu kuvankäsittelyn lisäksi myös äänenhallintaan liittyvien tehtävien ratkaisemiseen. Näistä esimerkkejä ovat muun muassa tuotantotilojen meluntorjunta sekä konserttisalien akustisten ominaisuuksien parantaminen. Lisäksi menetelmää voidaan hyödyntää laskennallisessa kemiassa: se mahdollistaa esimerkiksi parhaan mahdollisen rakenteen etsimisen, kun suunnitellaan uusia lääkeainemolekyylejä sekä teräksen jatkuva…
Large-scale nonsmooth optimization: new variable metric bundle algorithm with limited memory
Limited memory bundle algorithm for large bound constrained nonsmooth minization problems
Typically, practical optimization problems involve nonsmooth functions of hundreds or thousands of variables. As a rule, the variables in such problems are restricted to certain meaningful intervals. In this paper, we propose an efficient adaptive limited memory bundle method for large-scale nonsmooth, possibly nonconvex, bound constrained optimization. The method combines the nonsmooth variable metric bundle method and the smooth limited memory variable metric method, while the constraint handling is based on the projected gradient method and the dual subspace minimization. The preliminary numerical experiments to be presented confirm the usability of the method.