0000000001203580

AUTHOR

E. K. Vehstedt

showing 1 related works from this author

An antidamping spin–orbit torque originating from the Berry curvature

2014

Magnetization switching at the interface between ferromagnetic and paramagnetic metals, controlled by current-induced torques, could be exploited in magnetic memory technologies. Compelling questions arise regarding the role played in the switching by the spin Hall effect in the paramagnet and by the spin-orbit torque originating from the broken inversion symmetry at the interface. Of particular importance are the antidamping components of these current-induced torques acting against the equilibrium-restoring Gilbert damping of the magnetization dynamics. Here, we report the observation of an antidamping spin-orbit torque that stems from the Berry curvature, in analogy to the origin of the …

PhysicsMagnetization dynamicsCondensed matter physicsmedia_common.quotation_subjectPoint reflectionBiomedical EngineeringBioengineeringCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsAsymmetryAtomic and Molecular Physics and OpticsCondensed Matter::Materials ScienceParamagnetismMagnetizationFerromagnetismSpin Hall effectCondensed Matter::Strongly Correlated ElectronsGeneral Materials ScienceBerry connection and curvatureElectrical and Electronic Engineeringmedia_commonNature Nanotechnology
researchProduct