0000000001203893
AUTHOR
L. A. Balmaceda
Evolution of small-scale magnetic elements in the vicinity of granular-size swirl convective motions
Advances in solar instrumentation have led to a widespread usage of time series to study the dynamics of solar features, specially at small spatial scales and at very fast cadences. Physical processes at such scales are determinant as building blocks for many others occurring from the lower to the upper layers of the solar atmosphere and beyond, ultimately for understanding the bigger picture of solar activity. Ground-based (SST) and space-borne (Hinode) high-resolution solar data are analyzed in a quiet Sun region displaying negative polarity small-scale magnetic concentrations and a cluster of bright points observed in G-band and Ca II H images. The studied region is characterized by the …
Structure of Small Magnetic Elements in the Solar Atmosphere
High resolution images at different wavelengths, spectrograms and magnetograms, representing different levels of the solar atmosphere obtained with Hinode have been combined to study the 3-dimensional structure of the small magnetic elements in relation to their radiance. A small magnetic element is described as example of the study.
Observations of vortex motion in the solar photosphere using HINODE-SP data
In this work, we focus in the magnetic evolution of a small region as seen by Hinode-SP during the time interval of about one hour. High-cadence LOS magnetograms and velocity maps were derived, allowing the study of different small-scale processes such as the formation/disappearance of bright points accompanying the evolution of an observed convective vortical motion.