0000000001205709

AUTHOR

Dominique Morandi

showing 18 related works from this author

TheMedicago truncatulahypermycorrhizal B9 mutant displays an altered response to phosphate and is more susceptible toAphanomyces euteiches

2014

Inorganic phosphate (Pi) plays a key role in the development of arbuscular mycorrhizal (AM) symbiosis, which is favoured when Pi is limiting in the environment. We have characterized the Medicago truncatula hypermycorrhizal B9 mutant for its response to limiting (P/10) and replete (P2) Pi. On P2, mycorrhization was significantly higher in B9 plants than in wild-type (WT). The B9 mutant displayed hallmarks of Pi-limited plants, including higher levels of anthocyanins and lower concentrations of Pi in shoots than WT plants. Transcriptome analyses of roots of WT and B9 plants cultivated on P2 or on P/10 confirmed the Pi-limited profile of the mutant on P2 and highlighted its altered response t…

2. Zero hungerOomycetebiologyPhysiologyfungiMutantfood and beveragesPlant Sciencebiology.organism_classificationMedicago truncatulaMicrobiologyTranscriptomeArbuscular mycorrhizaSymbiosisBotanyShootAphanomyces euteichesPlant, Cell & Environment
researchProduct

Influence of arbuscular mycorrhizal colonisation on cadmium induced Medicago truncatula root isoflavonoid accumulation.

2012

Cadmium is a serious environmental pollution threats to the planet. Its accumulation in plants affects many cellular functions, resulting in growth and development inhibition, whose mechanisms are not fully understood. However, some fungi forming arbuscular mycorrhizal symbiosis with the majority of plant species have the capacity to buffer the deleterious effect of this heavy metal. In the present work we investigated the capacity of Rhizophagus irregularis (syn. Glomus irregularis) to alleviate cadmium stress in Medicago truncatula. In spite of a reduction in all mycorrhizal parameters, plants colonized for 21 days by R. irregularis and treated by 2 mg kg(-1) cadmium displayed less growth…

Rhizophagus irregularisCoumestrolPterocarpansPhysiology[SDV]Life Sciences [q-bio]chemistry.chemical_elementmycorrhizaDown-RegulationEnvironmental pollutionPlant SciencePlant Rootschemistry.chemical_compoundSoilIsoflavonoidGlucosidesGene Expression Regulation PlantMycorrhizaeBotanyMedicago truncatulaGeneticsMedicarpinBiomassMycorrhizaheavy metalsGlomeromycotaSymbiosisGlomusPlant ProteinsCadmiumbiologyfungifood and beveragesbiology.organism_classificationisoflavonoidsIsoflavonesMedicago truncatulaAlcohol Oxidoreductaseschemistry[SDE]Environmental Sciencesleguminous plantsPlant ShootsCadmiumPlant physiology and biochemistry : PPB
researchProduct

Symbiosis-related plant genes modulate molecular responses in an arbuscular mycorrhizal fungus during early root interactions.

2009

To gain further insight into the role of the plant genome in arbuscular mycorrhiza (AM) establishment, we investigated whether symbiosis-related plant genes affect fungal gene expression in germinating spores and at the appressoria stage of root interactions. Glomus intraradices genes were identified in expressed sequence tag libraries of mycorrhizal Medicago truncatula roots by in silico expression analyses. Transcripts of a subset of genes, with predicted functions in transcription, protein synthesis, primary or secondary metabolism, or of unknown function, were monitored in spores and germinating spores and during interactions with roots of wild-type or mycorrhiza-defective (Myc–) mutan…

0106 biological sciencesPhysiologychampignon phytopathogèneBiologyGenes Plant01 natural sciencesPlant Root NodulationPlant RootsMicrobiology03 medical and health sciencesGene Expression Regulation PlantARBUSCULAR MYCORRHIZAL FUNGUSMycorrhizaeGene expressionMedicago truncatulaSpore germination[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyMycorrhizaSymbiosisGene030304 developmental biologyPlant Proteins0303 health sciencesAppressoriumExpressed sequence taggénomegènefungifood and beveragesGeneral Medicine15. Life on landbiology.organism_classificationMedicago truncatulaArbuscular mycorrhizaracinesymbioseAgronomy and Crop Science010606 plant biology & botanyMolecular plant-microbe interactions : MPMI
researchProduct

Characterization and purification of a bacterial chlorogenic acid esterase detected during the extraction of chlorogenic acid from arbuscular mycorrh…

2016

International audience; A Gram-negative bacterium able to grow using chlorogenic acid (5-caffeoylquinic acid) as sole carbon source has been isolated from the roots of tomato plants inoculated with the arbuscular mycorrhizal fungus Rhizophagus irregularis. An intracellular esterase exhibiting very high affinity (K-m = 2 mu M) for chlorogenic acid has been extracted and purified by FPLC from the chlorogenate-grown cultures of this bacterium. The molecular mass of the purified esterase determined by SDS-PAGE was 61 kDa and its isoelectric point determined by chromatofocusing was 7.75. The esterase hydrolysed chlorogenic acid analogues (caffeoylshikimate, and the 4- and 3-caffeoylquinic acid i…

0106 biological sciences0301 basic medicineRhizophagus irregularisCoumaric AcidsPhysiologyRoot-associated bacteria[SDV]Life Sciences [q-bio]Arbuscular mycorrhizal fungiPlant ScienceBiologyCoumaric acidRoot exudates01 natural sciencesEsterasePlant RootsProtocatechuic acidSubstrate SpecificityFerulic acid03 medical and health scienceschemistry.chemical_compoundHydrolysisChlorogenic acidBacterial ProteinsSolanum lycopersicumMycorrhizaeGeneticsMethyl caffeate[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyBacteriaEthanolMethanolChlorogenic acidbiology.organism_classification6. Clean waterChlorogenase030104 developmental biologychemistryBiochemistry[SDE]Environmental SciencesCarboxylic Ester Hydrolases010606 plant biology & botany
researchProduct

Transcription of two blue copper-binding protein isogenes is highly correlated with arbuscular mycorrhizal development in Medicago truncatula.

2010

International audience; Expression profiling of two paralogous arbuscular mycorrhizal (AM)-specific blue copper-binding gene (MtBcp1a and MtBcp1b) isoforms was performed by real-time quantitative polymerase chain reaction in wild-type Medicago truncatula Jemalong 5 (J5) during the mycorrhizal development with Glomus intraradices for up to 7 weeks. Time-course analysis in J5 showed that expression of both MtBcp1 genes increased continuously and correlated strongly with the colonization intensity and arbuscule content. MtPT4, selected as a reference gene of the functional plant-fungus association, showed a weaker correlation to mycorrhizal development. In a second experiment, a range of mycor…

0106 biological sciencesTranscription GeneticPhysiologyGLOMUS INTRARADICESMutantMolecular Sequence Data01 natural sciences03 medical and health sciencesTranscription (biology)Gene Expression Regulation PlantBLUE COPPER-BINDINGMYCRORHIZE ARBUSCULAIREMycorrhizaeGene expressionBotanyMedicago truncatulaProtein Isoforms[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyRELATION PLANTE-MICROORGANISMEMycorrhizaGenePhylogeny030304 developmental biologyPlant Proteins2. Zero hunger0303 health sciencesbiologyfungiGeneral Medicinebiology.organism_classificationMolecular biologyMedicago truncatulaGene expression profilingReal-time polymerase chain reactionCarrier ProteinsAgronomy and Crop Science010606 plant biology & botanyMolecular plant-microbe interactions : MPMI
researchProduct

Detection of a plant enzyme exhibiting chlorogenate-dependant caffeoyltransferase activity in methanolic extracts of arbuscular mycorrhizal tomato ro…

2012

When Glomus intraradices-colonised tomato roots were extracted in methanol at 6 degrees C, chlorogenic acid (5-caffeoylquinic acid), naturally present in the extract, was slowly converted by transesterification into methyl caffeate. The progress of the reaction could be monitored by HPLC. The reaction only occurred when the ground roots were left in contact with the hydro-alcoholic extract and required the presence of 15-35% water in the mixture. When the roots were extracted in ethanol, chlorogenic acid was transformed to ethyl caffeate in the same conditions. The reaction was also detected in Glomus mosseae-colonised tomato root extracts. It was also detectable in non-mycorrhizal root ext…

Physiology[SDV]Life Sciences [q-bio]Arbuscular mycorrhizal fungiPlant SciencePlant RootsSubstrate SpecificityACBIOSYNTHESISchemistry.chemical_compoundTRANSFERASESolanum lycopersicumMycorrhizaeMethyl caffeateSWEET-POTATO ROOTSFood scienceEnzyme InhibitorsGlomusChromatography High Pressure LiquidPlant ProteinsbiologyTemperaturePlant physiologyfood and beveragesChlorogenic acidBiochemistryFUNGUSCOFFEE[SDE]Environmental SciencesGENESMETABOLISMCaffeoyltransferaseTomatoCaffeic AcidsChlorogenic acidTransferasesGenetics[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyEnzyme AssaysEthanolEsterificationPlant ExtractsfungiEthyl caffeatePlant Components Aerialbiology.organism_classificationRootsEnzyme assayEnzyme ActivationPhenylmethylsulfonyl FluorideTransesterificationchemistrybiology.proteinMethanolCAFFEIC ACIDCATALYZED SYNTHESIS
researchProduct

Could subcellular proteomics of root plastids teach us more about mycorrhizal symbiosis?

2007

International audience; The arbuscular mycorrhizal (AM) symbiosis is a mutualistic association between soil-borne fungi and the roots of most plant species. Involving the bilateral exchange of nutrients, the symbiosis is connected to drastic changes in plant cell organelle morphology and physiology. Root plastids, in particular, are forming extensive, network-like structures covering the main symbiotic interface, i.e., intracellular, highly branched haustorium-like fungal structures called arbuscules. These plastid networks are highly dynamic and are formed and degraded concomitantly with the formation and degradation of arbuscules. By producing basic metabolic building blocks like fatty ac…

[SDV] Life Sciences [q-bio]MYCORRHIZAL SYMBIOSISROOT PLASMIDS[SDV]Life Sciences [q-bio]fungifood and beveragesMEDICAGO TRUNCATULA
researchProduct

High-troughput TILLING to identify symbiosis-related plant gene function in arbuscular mycorrhiza

2006

International audience

[SDV] Life Sciences [q-bio]arbuscular mycorrhiza[SDV]Life Sciences [q-bio]High-troughput TILLINGsymbiosis-related plant gene functionComputingMilieux_MISCELLANEOUS
researchProduct

Blue-copper binding proteins of Medicago truncatula: Characterization of the expression of two genes related to the arbuscular mycorrhizal symbiosis

2009

International audience; Expression profiling of two paralogous arbuscular mycorrhizal (AM)-specific blue copper-binding gene (MtBcpla and MtBcp1b) isoforms was performed by real-time quantitative polymerase chain reaction in wild-type Medicago truncatula Jemalong 5 (J5) during the mycorrhizal development with Glomus intraradices for up to 7 weeks. Timecourse analysis in J5 showed that expression of both MtBcp1 genes increased continuously and correlated strongly with the colonization intensity and arbuscule content. MtPT4, selected as a reference gene of the functional plant-fungus association, showed a weaker correlation to mycorrhizal development. In a second experiment, a range of mycorr…

lipid raftsroots[SDE] Environmental Sciences[SDV]Life Sciences [q-bio]fungigene-expression[SDV] Life Sciences [q-bio]symbiotic nodule development[SDE]Environmental Sciencesreceptor kinaseevolutionidentificationfungiphosphate transportermutants
researchProduct

Influence of nitrogen on accumulation of isosojagol ( a newly detected coumestan in soybean ) and associated isoflavonoids in roots and nodules of my…

1991

International audience

[SDV] Life Sciences [q-bio][SDE] Environmental Sciences[SDV]Life Sciences [q-bio][SDE]Environmental SciencesPHYCOMYCETESComputingMilieux_MISCELLANEOUS
researchProduct

Induction of coumestans by the mycorrhizal fungus Glomus intraradices in roots of different Myc- mutants of Medicago truncatula

2001

National audience

[SDV] Life Sciences [q-bio][SDV]Life Sciences [q-bio]ComputingMilieux_MISCELLANEOUS
researchProduct

Effect of cadmium on growth, isoflavonoid and protein accumulation patterns in mycorrhizal roots of Medicago truncatula

2007

International audience; Ecosystems are submitted to various abiotic stresses, among which heavy metals represent major industrial pollutants. Cadmium (Cd), that has damaging effects on plant metabolism, occurs in agricultural environments through industrial pollution and human activities, including phosphate fertiliser and sewage sludge applications. Metal availability to plants can be modulated by soil microorganisms, including arbuscular mycorrhizal (AM) fungi. In the present work, Cd effects on the model legume Medicago truncatula inoculated or not with the AM fungus Glomus intraradices have been studied at 3 levels: (1) plant biomass production together with green part chlorophyll quant…

[SDV] Life Sciences [q-bio]CADMIUMARBUSCULAR MYCORRHIZAL[SDV]Life Sciences [q-bio]GLOMUS INTRARADICESfungifood and beveragesMEDICAGO TRUNCATULA
researchProduct

The arbuscular mycorrhizal symbiosis a modulator of cadmium stress

2008

International audience; Ecosystems are submitted to various abiotic stresses, among which heavy metals represent major industrial pollutants. Cadmium (Cd), that has damaging effects on plant metabolism, occurs in agricultural environments through industrial pollution and human activities, including phosphate fertiliser and sewage sludge applications. Metal availability to plants can be modulated by soil microorganisms, such as arbuscular mycorrhizal (AM) fungi. In the present work, Cd effects on the model legume Medicago truncatula inoculated or not with the AM fungus Glomus intraradices have been studied at 3 levels: (1) plant biomass production together with green part chlorophyll quantif…

[SDV] Life Sciences [q-bio]MYCORRHIZAL SYMBIOSISCADMIUM STRESS[SDV]Life Sciences [q-bio]fungiBIOPROTECTIONfood and beveragesPROTEOMICS
researchProduct

Influence of nitrate on accumulation of isoflavonoids in roots and nodules of mycorrhizal and no mycorrhizal soybean

1990

International audience

[SDV] Life Sciences [q-bio][SDV]Life Sciences [q-bio]GLOMUS INTRARADICEComputingMilieux_MISCELLANEOUS
researchProduct

The Medicago truncatula hypermycorrhizal B9 mutant displays an altered response to phosphate and is more susceptible to Aphanomyces euteiches.

2014

SPE IPM; National audience; Inorganic phosphate (Pi) plays a key role in the development of arbuscular mycorrhizal (AM) symbiosis, which is favoured when Pi is limiting in the environment. We have characterized the Medicago truncatula hypermycorrhizal B9 mutant for its response to limiting (P/10) and replete (P2) Pi. On P2, mycorrhization was significantly higher in B9 plants than in wild-type (WT). The B9 mutant displayed hallmarks of Pi-limited plants, including higher levels of anthocyanins and lower concentrations of Pi in shoots than WT plants. Transcriptome analyses of roots of WT and B9 plants cultivated on P2 or on P/10 confirmed the Pi-limited profile of the mutant on P2 and highli…

[SDE] Environmental Sciencesarbuscular mycorrhiza[SDV]Life Sciences [q-bio]fungifood and beveragessymbiosis[SDV] Life Sciences [q-bio]Aphanomyces euteichesnutrientsMedicago truncatula[SDE]Environmental Sciences[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal Biologysignallingtranscriptomephosphate
researchProduct

Supernodulation mutants of Pisum sativum and Medicago truncatula : characterization of the mutants and their symbiosis with Rhizobium and arbuscular …

2000

International audience

[SDV] Life Sciences [q-bio][SDE] Environmental Sciences[SDV]Life Sciences [q-bio][SDE]Environmental SciencesComputingMilieux_MISCELLANEOUS
researchProduct

Comparison between a myc- pea cultivar (Frisson) and one of its myc- mutant (P2) in their ability to produce defense reactions after elicitation with…

1994

International audience

[SDV] Life Sciences [q-bio][SDV]Life Sciences [q-bio]ComputingMilieux_MISCELLANEOUS
researchProduct

Phosphorus tolerance of an hypermycorrhizal mutant of Medicago truncatula

2010

International audience

[SDV] Life Sciences [q-bio][SDE] Environmental Sciences[SDV]Life Sciences [q-bio]Medicago truncatula[SDE]Environmental Sciences[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal Biologyphosphorus toleranceComputingMilieux_MISCELLANEOUS
researchProduct