0000000001210841

AUTHOR

Jos�� A. Font

Denoising of gravitational-wave signal GW150914 via total-variation methods

We apply a regularized Rudin-Osher-Fatemi total variation (TV) method to denoise the transient gravitational wave signal GW150914. We have previously applied TV techniques to denoise numerically generated grav- itational waves embedded in additive Gaussian noise, obtaining satisfactory results irrespective of the signal morphology or astrophysical origin. We find that the non-Gaussian, non-stationary noise from the gravitational wave event GW150914 can also be successfully removed with TV-denoising methods. The quality of the de- noised waveform is comparable to that obtained with the Bayesian approach used in the discovery paper [1]. TV-denoising techniques may thus offer an additional via…

research product

GW190521 as a merger of Proca stars: a potential new vector boson of $8.7 \times 10^{-13}$ eV

Advanced LIGO-Virgo reported a short gravitational-wave signal (GW190521) interpreted as a quasi-circular merger of black holes, one populating the pair-instability supernova gap, forming a remnant black hole of $M_f\sim 142 M_\odot$ at a luminosity distance of $d_L \sim 5.3$ Gpc. With barely visible pre-merger emission, however, GW190521 merits further investigation of the pre-merger dynamics and even of the very nature of the colliding objects. We show that GW190521 is consistent with numerically simulated signals from head-on collisions of two (equal mass and spin) horizonless vector boson stars (aka Proca stars), forming a final black hole with $M_f = 231^{+13}_{-17}\,M_\odot$, located …

research product