0000000001212106
AUTHOR
Filip Topić
Mixed valence mono- and hetero-metallic grid catenanes
Multicomponent self-assembly was employed to obtain, in the solid state, a series of mixed valence mono- and hetero-metallic grid catenanes, which were characterized by single crystal X-ray diffraction.
Amidino substituted 2-aminophenols: biologically important building blocks for the amidino-functionalization of 2-substituted benzoxazoles
Unlike the closely related and widely investigated amidino-substituted benzimidazoles and benzothiazoles with a range of demonstrated biological activities, the matching benzoxazole analogues still remain a largely understudied and not systematically evaluated class of compounds. To address this challenge, we utilized the Pinner reaction to convert isomeric cyano-substituted 2- aminophenols into their amidine derivatives, which were isolated as hydrochlorides and/or zwitterions, and whose structure was confirmed by single crystal X-ray diffraction. The key step during the Pinner synthesis of the crucial carboximidate intermediates was characterized through mechanistic DFT calculations, with…
Electron-Deficient Pyridylimines: Versatile Building Blocks for Functional Metallosupramolecular Chemistry
Metallosupramolecular systems heavily rely on the correct choice of ligands to obtain materials with desired properties. Engaging this problem, we present three ligand systems and six of their mono- and dinuclear complexes, based on the subcomponent self-assembly approach using electron-deficient pyridylcarbaldehyde building blocks. The properties are examined in solution by NMR and UV-vis spectroscopy and CV measurements as well as in solid state by single crystal X-ray diffraction analysis. Ultimately, the choice of ligands allows for fine-tuning of the electronic properties of the metal centers, complex-to-complex transformations, as well as establishing distinct anion-π-interaction moti…
Cocrystal trimorphism as a consequence of the orthogonality of halogen- and hydrogen-bonds synthons.
True trimorphic cocrystals, i.e. multi-component molecular crystals of identical composition that exhibit three polymorphic structures, are exceedingly rare and so far no halogen-bonded cocrystal system has been reported to exhibit trimorphism. Here we describe a unique example of a trimorphic cocrystal exhibiting both hydrogen and halogen bonds in which the differences between polymorphs reveal their orthogonality, evident by the apparently independent variation of well-defined hydrogen- and halogen-bonded motifs. peerReviewed
Self-assembly of metallosupramolecular rhombi from chiral concave 9,9'-spirobifluorene-derived bis(pyridine) ligands.
Two new 9,9’-spirobifluorene-based bis(4-pyridines) were synthesised in enantiopure and one also in racemic form. These ligands act as concave templates and form metallosupramolecular [(dppp)2M2L2] rhombi with cis-protected [(dppp)Pd]2+ and [(dppp)Pt]2+ ions. The self-assembly process of the racemic ligand preferably occurs in a narcissistic self-recognising manner. Hence, a mixture of all three possible stereoisomers [(dppp)2M2{(R)-L}2](OTf)4, [(dppp)2M2{(S)-L}2](OTf)4, and [(dppp)2M2{(R)-L}{(S)-L}](OTf)4 was obtained in an approximate 1.5:1.5:1 ratio which corresponds to an amplification of the homochiral assemblies by a factor of approximately three as evidenced by NMR spectroscopy and m…
Alternative Motifs for Halogen Bonding
The halogen-bonding interaction is one of the rising stars in supramolecular chemistry. Although other weak interactions and their influence on the structure and chemistry of various molecules, complexes and materials have been investigated thoroughly, the field of halogen bonding is still quite unexplored and its impact on chemistry in general is yet to be fully revealed. In principle, every Y–X bond (Y = electron-withdrawing atom or moiety, X = halogen atom) can act as a halogen-bond donor when the halogen is polarized enough by Y. Perfluorohalocarbons are iconic halogen-bond donor molecules in which Y is a perfluorinated aryl or alkyl moiety and X is either iodine or bromine. In this art…
Self-Sorting Effects in the Self-Assembly of Metallosupramolecular Rhombi from Chiral BINOL-Derived Bis(pyridine) Ligands
Four BINOL-based bis(4-pyridyl) ligands were synthesised in enantiopure and racemic form. These ligands form metallosupramolecular [(dppp)2M2L2] rhombi with cis-protected [(dppp)Pd]2+ and [(dppp)Pt]2+ ions. In principle, racemic ligands can self-assemble into three stereoisomeric rhombi. The degree of self-sorting in the self-assembly process crucially depends on the substitution pattern and the resulting bend angle of the V-shaped ligands as well as the degree of steric crowding within the assembly when racemic ligands are used. Thus, these processes either lead to homochiral assemblies in a narcissistic self-recognition manner, to heterochiral assemblies in a social self-discriminating ma…
Selective recognition of fluoride anion in water by a copper(II) center embedded in a hydrophobic cavity
The ability of a water-soluble pentacationic calix[6]arene-based CuII complex to bind anions in water has been explored. Quite remarkably, the complex exhibits strong and selective fluoride binding in the pH range of 6–7. The binding constant at pH 5.9 was evaluated to be 85 000 M−1, which is one of the highest values ever reported for a fluoride probe in water and at this pH. The complex also binds chloride ions, but 1000 times less efficiently. The combination of the calix[6]arene hydrophobic cavity with the CuII complex, presenting its labile site in the endo position, is the reason for the selective recognition process. The single crystal X-ray structure of the organo-soluble parent com…
Templated synthesis of a large and flexible covalent porphyrinic cage bearing orthogonal recognition sites.
A large covalent cage incorporating two porphyrins attached by four long and flexible polyether chains each bearing two 3-pyridyl ligands was synthesized from a DABCO-templated olefin metathesis reaction. The X-ray structure of the cage with the DABCO coordinated inside the cavity to the two zinc(II) porphyrins reveals a highly symmetric structure.
A New Structural Motif for an Enantiomerically Pure Metallosupramolecular Pd4L8Aggregate by Anion Templating
An enantiomerically pure BINOL-based bis(3-pyridyl) ligand 1 assembles into a homochiral [Pd4(1)8] complex upon coordination to tetravalent PdII ions. The formation of this aggregate is templated by two tetrafluoroborate counterions that are encapsulated in two peripheral cavities. The resulting structure is a new structural motif for this kind of metallosupramolecular assemblies that arranges the palladium ions in a distorted tetrahedral fashion and forces ligand 1 to adopt two different conformations. Both phenomena are unique and cause an overall three-dimensional structure that has another confined, chiral, and hydrophilic central cavity.
Enantiomerenreine [M6L12]- oder [M12L24]-Polyeder aus flexiblen Bis(pyridin)-Liganden
Tridentate C–I⋯O−–N+ halogen bonds
The X-ray structures of the first co-crystals where the three oxygen lone pairs in N-oxides are fully utilized for tridentate C–I⋯O−–N+ halogen bonding with 1,ω-diiodoperfluoroalkanes are reported, studied computationally, and compared with the corresponding silver(I) N-oxide complexes.
Enantiomerically pure [M(6)L(12)] or [M(12)L(24)] polyhedra from flexible bis(pyridine) ligands.
Coordination-driven self-assembly is one of the most powerful strategies to prepare nanometer-sized discrete (supra)molecular assemblies. Herein, we report on the use of two constitutionally isomeric BINOL-based bis(pyridine) ligands for this purpose. Upon coordination to Pd(II) ions these self-assemble into enantiomerically pure endo- and exo-functionalized hexa- and dodecanuclear metallosupramolecular spheres with a chiral skeleton depending on the substitution pattern of the BINOL core. These aggregates were characterized by NMR, MS, DLS, TEM, and EELS as well as ECD. Furthermore, experimental ECD data could be compared to those obtained from theoretical simulations using a simplified Ta…
Simultane endo - und exo -Komplexbildung von Pyridin[4]aren-Dimeren mit neutralen und anionischen Gästen
Chiral Self‐Sorting of trans ‐Chelating Chiral Ligands upon Formation of Pd II Complexes (Eur. J. Inorg. Chem. 15/2014)
Single and Multiple Additions of Dibenzoylmethane onto Buckminsterfullerene
A novel dibenzoylmethane-fullerene e,e,e-tris adduct was synthesized by the application of a variation of the Bingel–Hirsch conditions and characterized among others by X-ray crystallography. In addition, the corresponding hexakis adduct was detected by MALDI-TOF-MS analysis. Its existence was supported by density-functional-theory (DFT) computations. Furthermore a new synthesis of bis(benzoyl)methanofullerene was established, and its molecular structure was elucidated by X-ray crystallography. DFT computations reproduced the experimentally determined conformation and predict a low energy barrier for the rotation of the two benzoyl moieties.
Enantiomerically pure trinuclear helicates via diastereoselective self-assembly and characterization of their redox chemistry.
A tris(bipyridine) ligand 1 with two BINOL (BINOL = 2, 2′-dihydroxy-1, 1′-binaphthyl) groups has been prepared in two enantiomerically pure forms. This ligand undergoes completely diastereoselective self-assembly into D2-symmeteric double-stranded trinuclear helicates upon coordination to copper(I) and silver(I) ions and to D3-symmetric triple-stranded trinuclear helicates upon coordination to copper(II), zinc(II), and iron(II) ions as demonstrated by mass spectrometry, NMR and CD spectroscopy in combination with quantum chemical calculations and X-ray diffraction analysis. According to the calculations, the single diastereomers that are formed during the self-assembly process are strongly …
Assembly and dichroism of a four-component halogen-bonded metal-organic cocrystal salt solvate involving dicyanoaurate(I) acceptors
We describe the use of dicyanoaurate ions as linear ditopic metal–organic acceptors for the halogen bond-driven assembly of a dichroic metal–organic cocrystal based on azobenzene chromophores. Structural analysis by single crystal X-ray diffraction revealed that the material is a four-component solid, consisting of anticipated anionic metal–organic halogen-bonded chains based on dicyanoaurate ions, as well as complex potassium-based cations and discrete molecules of the crown ether 15-crown-5. Importantly, the structural analysis revealed the parallel alignment of the halogen-bonded chains required for dichroic behaviour, confirming that crystal engineering principles developed for the desi…
Chiral hemicucurbit[8]uril as an anion receptor: selectivity to size, shape and charge distribution
A novel eight-membered macrocycle of the hemicucurbit[n]uril family, chiral (all-R)-cyclohexanohemicucurbit[8]uril (cycHC[8]) binds anions in a purely protic solvent with remarkable selectivity. The cycHC[8] portals open and close to fully encapsulate anions in a 1 : 1 ratio, resembling a molecular Pac-Man™. Comprehensive gas, solution and solid phase studies prove that the binding is governed by the size, shape and charge distribution of the bound anion. Gas phase studies show an order of SbF6− ≈ PF6− > ReO4− > ClO4− > SCN− > BF4− > HSO4− > CF3SO3− for anion complexation strength. An extensive crystallographic study reveals the preferred orientations of the anions within the octahedral cav…
Unexpected self-assembly of a homochiral metallosupramolecular M4L4 catenane
Two enantiomerically pure 9,9'-spirobifluorene-based bis(pyridine) ligands 1 and 2 were prepared to study their self-assembly behavior upon coordination to cis-protected palladium(II) ions. Whereas the sterically more demanding ligand, 2, gave rise to the expected dinuclear metallosupramolecular M2L2 rhombi, the sterically less demanding ligand, 1, acts as a template to give rise to a homochiral metallosupramolecular M4L4 catenane.
Heads or Tails? Sandwich-Type Metallocomplexes of Hexakis(2,3-di-O-methyl)-α-cyclodextrin
Native and synthetically modified cyclodextrins (CDs) are useful building blocks in construction of large coordination complexes and porous materials with various applications. Sandwich-type complexes (STCs) are one of the important groups in this area. Usually, coordination of secondary hydroxyls or the “head” portal of native CD molecules to a notional multinuclear ring of metal cations leads to formation of head-to-head STCs. Our study introduces a new CD-ligand, hexakis(2,3-di-O-methyl)-α-cyclodextrin, which enables formation of intriguing head-to-head, but also novel tail-to-tail STCs. Homometallic silver-based head-to-head STCs, AgPF6-STC and AgClO4-STC, were obtained by coordination …
Selective recognition of neutral guests in an aqueous medium by a biomimetic calix[6]cryptamide receptor
The design of artificial receptors that can efficiently work in water is a challenging research area. A possible biomimetic approach for the elaboration of such receptors consists of associating a hydrophobic cavity with a polar polyfunctional binding site. On this basis, a hydrophilic calix[6]cryptamide decorated with oligo(ethylene glycol) units (i.e. 8) was synthesized through an efficient [1 + 1] macrocyclization reaction as the key-step. The complexation of neutral molecules was evaluated by NMR spectroscopy through competition experiments either in apolar or aqueous media. In both media, host 8 can bind neutral species that display H-bonding acceptor and donor groups such as amides or…
Selective Extraction and Efficient Binding in a Protic Solvent of Contact Ion Triplets by Using a Thiourea-Based Bis-Calix[6]arene Receptor
We report a D3h-symmetric tail-to-tail bis-calix[6]thiourea 5 that displays two divergent cavities triply connected by thiourea linkages. This calix[6]tube was efficiently synthesized through a [1+1] macrocyclization reaction and characterized by X-ray diffraction analysis. The binding properties of this heterotritopic receptor were evaluated in a protic environment (i.e., CD3OD/CDCl3) through NMR studies. Thus, bis-calix[6]thiourea 5 exhibits a remarkable ability in the cooperative complexation of an anion sandwiched between two ammonium ions, a high selectivity for ammonium sulfate salts being observed. The anion is bound through multiple hydrogen-bonding interactions at the thiourea bind…
Halogen-Bonded Co-Crystals of Aromatic N-oxides : Polydentate Acceptors for Halogen and Hydrogen Bonds
The C-ethyl-2-methylresorcinarene (1) forms 1:1 in-cavity complexes with aromatic N,N′-dioxides, only if each of the aromatic rings has an N−O group. The structurally different C-shaped 2,2′-bipyridine N,N′-dioxide (2,2′-BiPyNO) and the linear rod-shaped 4,4′-bipyridine N,N′-dioxide (4,4′-BiPyNO) both form 1:1 in-cavity complexes with the host resorcinarene in C4v crown and C2v conformations, respectively. In the solid state, the host–guest interactions between the 1,3-bis(4-pyridyl)propane N,N′-dioxide (BiPyPNO) and the host 1 stabilize the unfavorable anti-gauche conformation. Contrary to the N,N′-dioxide guests, the mono-N-oxide guest, 4-phenylpyridine N-oxide (4PhPyNO), does not form an…
Design and synthesis of the first triply twisted Möbius annulene.
As long as 50 years ago theoretical calculations predicted that Mobius annulenes with only one π surface and one edge would exhibit peculiar electronic properties and violate the Huckel rules. Numerous synthetic attempts notwithstanding, the first singly twisted Mobius annulene was not prepared until 2003. Here we present a general, rational strategy to synthesize triply or even more highly twisted cyclic π systems. We apply this strategy to the preparation of a triply twisted [24]dehydroannulene, the structure of which was confirmed by X-ray analysis. Our strategy is based on the topological transformation of 'twist' into 'writhe'. The advantage is twofold: the product exhibits a lower deg…
Self-assembly of a M4L6 complex with unexpected S4 symmetry
In a one-pot reaction 1,4-diaminobenzene and 2-formylpyridine, as the reacting subcomponents, self-assemble to a small supramolecular M4L6 pseudo-tetrahedron with unexpected S4 symmetry in the presence of Fe(ii) ions.
Electron-deficient trifluoromethyl-substituted sub-components affect the properties of M4L4 tetrahedral cages
Two supramolecular tetrahedral cages based on a new electron-deficient trifluoromethyl-substituted pyridylimine ligand are synthesised by sub-component self-assembly. Their structures are characterised by NMR und UV-Vis spectroscopy, high-resolution mass spectrometry and single crystal X-ray diffraction. The iron(II) complex shows host–guest chemistry, complex-to-complex transformations and novel electronic properties.
Influencing the Self‐Sorting Behavior of [2.2]Paracyclophane‐Based Ligands by Introducing Isostructural Binding Motifs
Abstract Two isostructural ligands with either nitrile (Lnit) or isonitrile (Liso) moieties directly connected to a [2.2]paracyclophane backbone with pseudo‐meta substitution pattern have been synthesized. The ligand itself (Lnit) or its precursors (Liso) were resolved by HPLC on a chiral stationary phase and the absolute configuration of the isolated enantiomers was assigned by XRD analysis and/or by comparison of quantum‐chemical simulated and experimental electronic circular dichroism (ECD) spectra. Surprisingly, the resulting metallosupramolecular aggregates formed in solution upon coordination of [(dppp)Pd(OTf)2] differ in their composition: whereas Lnit forms dinuclear complexes, Liso…
Size‐Selective Encapsulation of Hydrophobic Guests by Self‐Assembled M 4 L 6 Cobalt and Nickel Cages
Subtle differences in metal-ligand bond lengths between a series of [M(4)L(6)](4-) tetrahedral cages, where M = Fe(II), Co(II), or Ni(II), were observed to result in substantial differences in affinity for hydrophobic guests in water. Changing the metal ion from iron(II) to cobalt(II) or nickel(II) increases the size of the interior cavity of the cage and allows encapsulation of larger guest molecules. NMR spectroscopy was used to study the recognition properties of the iron(II) and cobalt(II) cages towards small hydrophobic guests in water, and single-crystal X-ray diffraction was used to study the solid-state complexes of the iron(II) and nickel(II) cages.
Template-controlled synthesis of chiral cyclohexylhemicucurbit[8]uril
Enantiomerically pure cyclohexylhemicucurbit[8]uril (cycHC[8]), possessing a barrel-shaped cavity, has been prepared in high yield on a gram scale from either (R,R,N,N')-cyclohex-1,2-diylurea and formaldehyde or cycHC[6]. In either case, a dynamic covalent library is first generated from which the desired cycHC can be amplified using a suitable anion template.
Synthesis, structure and photophysical properties of a highly luminescent terpyridine-diphenylacetylene hybrid fluorophore and its metal complexes
A new fluorescent terpyridyl-diphenylacetylene hybrid fluorophore 4'-[4-{(4-methoxyphenyl)ethynyl}phenyl]-2,2':6',2''-terpyridine, L, was synthesized via Sonogashira cross-coupling of 4'-(4-bromophenyl)-2,2':6',2''-terpyridine and 4-ethynylanisole in the presence of Pd(PPh3)4/CuI as a catalyst. The solid state structure of L shows a trans arrangement of pyridine nitrogen atoms along the interannular bond in the terpyridine domain. Five transition metal complexes of L, {[FeL2](CF3SO3)2 (1), [ZnL2](ClO4)2 (2), [CdL2](ClO4)2 (3), [RuL2](PF6)2 (4), and PtMe3IL (5)}, have also been synthesized and characterized by spectroscopic methods and single crystal X-ray analysis. The X-ray crystal structu…
“Two-Story” Calix[6]arene-Based Zinc and Copper Complexes: Structure, Properties, and O 2 Binding
International audience; A new “two-story” calix[6]arene-based ligand was synthesized, and its coordination chemistry was explored. It presents a tren cap connected to the calixarene small rim through three amido spacers. X-ray diffraction studies of its metal complexes revealed a six-coordinate ZnII complex with all of the carbonyl groups of the amido arms bound and a five-coordinate CuII complex with only one amido arm bound. These dicationic complexes were poorly responsive toward exogenous neutral donors, but the amido arms were readily displaced by small anions or deprotonated with a base to give the corresponding monocationic complexes. Cyclic voltammetry in various solvents showed a r…
DOSY NMR, X-ray Structural and Ion-Mobility Mass Spectrometric Studies on Electron-Deficient and Electron-Rich M6L4 Coordination Cages.
A novel modular approach to electron-deficient and electron-rich M6L4 cages is presented. From the same starting compound, via a minor modulation of the synthesis route, two C3-symmetric ligands L1 and L2 with different electronic properties are obtained in good yield. The trifluoro-triethynylbenzene-based ligand L1 is more electron-deficient than the well-known 2,4,6-tri(4-pyridyl)-1,3,5-triazine, while the trimethoxy-triethynylbenzene-based ligand L2 is more electron-rich than the corresponding benzene analogue. Complexation of the ligands with cis-protected square-planar [(dppp)Pt(OTf)2] or [(dppp)Pd(OTf)2] corner-complexes yields two electron-deficient (1a and 1b) and two electron-rich …
Selective recognition of small hydrogen bond acceptors by a calix[6]arene-based molecular container
Selective molecular recognition is of primary importance for applications such as sensing and separation of chemicals. This work describes the host-guest and crystallisation properties of a penta-carbamated calix[6]arene designed as a molecular container with a H-donating recognition group directed towards the heart of the cavity. As demonstrated by NMR spectroscopy and X-ray diffraction studies, this macrocyclic receptor can selectively recognise small H-bond acceptors through one or two hydrogen bonds, the guests nesting inside the polyaromatic cavity surrounded by eleven bulky tert-butyl groups.
Heads or Tails? Sandwich-Type Metallo Complexes of Hexakis(2,3-di-O-methyl)-α-cyclodextrin
Native and synthetically modified cyclodextrins (CDs) are useful building blocks in the construction of large coordination complexes and porous materials with various applications. Sandwich-type co...
Single and Multiple Additions of Dibenzoylmethane onto Buckminsterfullerene (Eur. J. Org. Chem. 35/2013)
Systematic Construction of Ternary Cocrystals by Orthogonal and Robust Hydrogen and Halogen Bonds
A carefully designed strategy is presented for the construction of ternary cocrystals, based on the orthogonality of two supramolecular interaction modes: hydrogen bonding between crown ethers and thioureas and the halogen bonding between thioureas and perfluorohalocarbons. Tested on a set comprising two crown ethers, two thioureas and five halogen bond donors, the strategy resulted in a high, 75% success rate, with 15/20 component combinations yielding at least one cocrystal. Crystal structure analysis revealed the interplay between the hydrogen and halogen bonding motifs, also shedding light on the variables affecting their formation. peerReviewed
Counterion influence on the N–I–N halogen bond
A detailed investigation of the influence of counterions on the [N–I–N]+ halogen bond in solution, in the solid state and in silico is presented. Translational diffusion coefficients indicate close attachment of counterions to the cationic, three-center halogen bond in dichloromethane solution. Isotopic perturbation of equilibrium NMR studies performed on isotopologue mixtures of regioselectively deuterated and nondeuterated analogues of the model system showed that the counterion is incapable of altering the symmetry of the [N–I–N]+ halogen bond. This symmetry remains even in the presence of an unfavorable geometric restraint. A high preference for the symmetric geometry was found also in …
Alternative Motifs for Halogen Bonding (Eur. J. Org. Chem. 9/2013)
Dynamic Refolding of Ion-Pair Catalysts in Response to Different Anions.
Four distinct folding patterns were identified in two foldamer-type urea-thiourea catalysts bearing a basic dimethylamino unit by a combination of X-ray crystallography, solution NMR studies, and computational studies (DFT). These patterns are characterized by different intramolecular hydrogen bonding schemes that arise largely from different thiourea conformers. The free base forms of the catalysts are characterized by folds where the intramolecular hydrogen bonds between the urea and the thiourea units remain intact. In contrast, the catalytically relevant salt forms of the catalyst, where the catalyst forms an ion pair with the substrate or substrate analogues, appear in two entirely dif…
Anion-controlled formation of an aminal-(bis)imine Fe(ii)-complex.
In the presence of triflate as the counter anion, 1,2-diaminobenzene and 2-formylpyridine self-sort with iron(II) to a low-spin [Fe(L1)](OTf)2 complex in which both aminal and imine moieties coexist simultaneously, while under similar conditions the chloride anion leads to a high-spin [Fe(L2)Cl2] complex.
Ein enantiomerenreines metallosupramolekulares Pd4L8-Aggregat mit neuartigem Strukturmotiv: Bildung durch einen Anionen-Templateffekt
Ein enantiomerenreiner Bis(3-pyridyl)-Ligand 1 auf der Basis eines BINOL-Gerusts bildet mit tetravalenten PdII-Ionen einen homochiralen [Pd4(1)8]-Komplex. Zwei Tetrafluoroborationen dienen dabei als Template fur die Bildung dieses Aggegates und werden in zwei periphere Kavitaten eingeschlossen. Die dadurch resultierende Struktur reprasentiert ein neues Strukturmotiv fur diese Sorte von metallosupramolekularen Assemblaten, in dem die vier Palladiumionen in einer verzerrt tetraedrischen Anordnung zu finden sind. Dies zwingt den Liganden 1, zwei verschiedene Konformationen in dem Aggregat einzunehmen. Beide Phanomene sind einzigartig und fuhren uberdies zur Bildung einer dreidimensionalen Stru…
Chiral hemicucurbit[8]uril as an anion receptor: selectivity to size, shape and charge distribution† †Electronic supplementary information (ESI) available: MS, NMR, dynamic NMR and computational details and a DFT-based video of complexation. CCDC 1514736–1514741, 1521388. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6sc05058a Click here for additional data file. Click here for additional data file. Click here for additional data file.
Chiral (all-R)-cyclohexanohemicucurbit[8]uril binds anions in a 1 : 1 ratio in pure methanol like a molecular Pac-Man™ with remarkable selectivity based on the size, shape and charge distribution of the anion.
Counterion influence on the N–I–N halogen bond† †Electronic supplementary information (ESI) available: Experimental details of synthesis, compound characterisation, IPE NMR measurements, computational and crystallographic procedures, and crystal data for 1-Ag/I to 7-Ag/I, and 12-Ag. CCDC 1045981–1045995. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5sc01053e Click here for additional data file. Click here for additional data file.
Counterions influence three-center halogen bonds differently than coordination bonds of transition metals.
Chiral Self-Sorting of trans-Chelating Chiral Ligands upon Formation of PdII Complexes
Invited for the cover of this issue is the group of Arne Lutzen at the University of Bonn, Germany. The cover image shows two dissymmetric bis(3-pyridyl) ligands based on a planar chiral pseudo-ortho-disubstituted [2.2]paracyclophane scaffold. Upon forming a mononuclear [ML2] complex with palladium(II) ions, these ligands act in a trans-chelating manner and undergo complete chiral self-sorting.
Stepwise Construction of Heterobimetallic Cages by an Extended Molecular Library Approach.
Two novel heterobimetallic complexes, a trigonal-bipyramidal and a cubic one, have been synthesized and characterized using the same C3-symmetric metalloligand, prepared by a simple subcomponent self-assembly strategy. Adopting the molecular library approach, we chose a mononuclear, preorganized iron(II) complex as the metalloligand capable of self-assembly into a trigonal-bipyramidal or a cubic aggregate upon coordination to cis-protected C2-symmetric palladium(II) or unprotected tetravalent palladium(II) ions, respectively. The trigonal-bipyramidal complex was characterized by NMR and UV–vis spectroscopy, electrospray ionization mass spectrometry (ESI-MS), and single-crystal X-ray diffrac…
Simultaneous endo and exo Complex Formation of Pyridine[4]arene Dimers with Neutral and Anionic Guests
The formation of complexes between hexafluorophosphate (PF6- ) and tetraisobutyloctahydroxypyridine[4]arene has been thoroughly studied in the gas phase (ESI-QTOF-MS, IM-MS, DFT calculations), in the solid state (X-ray crystallography), and in chloroform solution (1 H, 19 F, and DOSY NMR spectroscopy). In all states of matter, simultaneous endo complexation of solvent molecules and exo complexation of a PF6- anion within a pyridine[4]arene dimer was observed. While similar ternary complexes are often observed in the solid state, this is a unique example of such behavior in the gas phase.
CCDC 1901894: Experimental Crystal Structure Determination
Related Article: Antti J. Neuvonen, Dimitris Noutsias, Filip Topić, Kari Rissanen, Tamás Földes, Imre Pápai, Petri M. Pihko|2019|J.Org.Chem.|84|15009|doi:10.1021/acs.joc.9b01980
CCDC 1952601: Experimental Crystal Structure Determination
Related Article: Roy Lavendomme, Florent Desroches, Steven Moerkerke, Filip Topić, Johan Wouters, Kari Rissanen, Michel Luhmer, Ivan Jabin|2020|Supramol.Chem.|32|23|doi:10.1080/10610278.2019.1679374
CCDC 1045987: Experimental Crystal Structure Determination
Related Article: Michele Bedin, Alavi Karim, Marcus Reitti, Anna-Carin C. Carlsson, Filip Topić, Mario Cetina, Fangfang Pan, Vaclav Havel, Fatima Al-Ameri, Vladimir Sindelar, Kari Rissanen, Jürgen Gräfenstein, Máté Erdélyi|2015|Chemical Science|6|3746|doi:10.1039/C5SC01053E
CCDC 1045995: Experimental Crystal Structure Determination
Related Article: Michele Bedin, Alavi Karim, Marcus Reitti, Anna-Carin C. Carlsson, Filip Topić, Mario Cetina, Fangfang Pan, Vaclav Havel, Fatima Al-Ameri, Vladimir Sindelar, Kari Rissanen, Jürgen Gräfenstein, Máté Erdélyi|2015|Chemical Science|6|3746|doi:10.1039/C5SC01053E
CCDC 1469023: Experimental Crystal Structure Determination
Related Article: Filip Topić and Kari Rissanen|2016|J.Am.Chem.Soc.|138|6610|doi:10.1021/jacs.6b02854
CCDC 1469021: Experimental Crystal Structure Determination
Related Article: Filip Topić and Kari Rissanen|2016|J.Am.Chem.Soc.|138|6610|doi:10.1021/jacs.6b02854
CCDC 1062272: Experimental Crystal Structure Determination
Related Article: Pia Bonakdarzadeh, Filip Topić, Elina Kalenius, Sandip Bhowmik, Sota Sato, Michael Groessl, Richard Knochenmuss, Kari Rissanen|2015|Inorg.Chem.|54|6055|doi:10.1021/acs.inorgchem.5b01082
CCDC 1543476: Experimental Crystal Structure Determination
Related Article: Anniina Kiesilä, Lauri Kivijärvi, Ngong Kodiah Beyeh, Jani O. Moilanen, Michael Groessl, Tatiana Rothe, Sven Götz, Filip Topić, Kari Rissanen, Arne Lützen and Elina Kalenius|2017|Angew.Chem.,Int.Ed.|56|10942|doi:10.1002/anie.201704054
CCDC 986176: Experimental Crystal Structure Determination
Related Article: Georg Meyer-Eppler, Filip Topić, Gregor Schnakenburg, Kari Rissanen, Arne Lützen|2014|Eur.J.Inorg.Chem.||2495|doi:10.1002/ejic.201402057
CCDC 1045983: Experimental Crystal Structure Determination
Related Article: Michele Bedin, Alavi Karim, Marcus Reitti, Anna-Carin C. Carlsson, Filip Topić, Mario Cetina, Fangfang Pan, Vaclav Havel, Fatima Al-Ameri, Vladimir Sindelar, Kari Rissanen, Jürgen Gräfenstein, Máté Erdélyi|2015|Chemical Science|6|3746|doi:10.1039/C5SC01053E
CCDC 997677: Experimental Crystal Structure Determination
Related Article: Andrea Brugnara, Filip Topić, Kari Rissanen, Aurélien de la Lande, Benoit Colasson, Olivia Reinaud|2014|Chemical Science|5|3897|doi:10.1039/C4SC01457J
CCDC 2060885: Experimental Crystal Structure Determination
Related Article: Lucija Ptiček, Lucija Hok, Petra Grbčić, Filip Topić, Mario Cetina, Kari Rissanen, Sandra Kraljević Pavelić, Robert Vianello, Livio Racané|2021|Org.Biomol.Chem.|19|2784|doi:10.1039/D1OB00235J
CCDC 1557848: Experimental Crystal Structure Determination
Related Article: Filip Topić, Rakesh Puttreddy, J. Mikko Rautiainen, Heikki M. Tuononen, Kari Rissanen|2017|CrystEngComm|19|4960|doi:10.1039/C7CE01381G
CCDC 1045988: Experimental Crystal Structure Determination
Related Article: Michele Bedin, Alavi Karim, Marcus Reitti, Anna-Carin C. Carlsson, Filip Topić, Mario Cetina, Fangfang Pan, Vaclav Havel, Fatima Al-Ameri, Vladimir Sindelar, Kari Rissanen, Jürgen Gräfenstein, Máté Erdélyi|2015|Chemical Science|6|3746|doi:10.1039/C5SC01053E
CCDC 2060891: Experimental Crystal Structure Determination
Related Article: Lucija Ptiček, Lucija Hok, Petra Grbčić, Filip Topić, Mario Cetina, Kari Rissanen, Sandra Kraljević Pavelić, Robert Vianello, Livio Racané|2021|Org.Biomol.Chem.|19|2784|doi:10.1039/D1OB00235J
CCDC 1045990: Experimental Crystal Structure Determination
Related Article: Michele Bedin, Alavi Karim, Marcus Reitti, Anna-Carin C. Carlsson, Filip Topić, Mario Cetina, Fangfang Pan, Vaclav Havel, Fatima Al-Ameri, Vladimir Sindelar, Kari Rissanen, Jürgen Gräfenstein, Máté Erdélyi|2015|Chemical Science|6|3746|doi:10.1039/C5SC01053E
CCDC 986175: Experimental Crystal Structure Determination
Related Article: Georg Meyer-Eppler, Filip Topić, Gregor Schnakenburg, Kari Rissanen, Arne Lützen|2014|Eur.J.Inorg.Chem.||2495|doi:10.1002/ejic.201402057
CCDC 1901892: Experimental Crystal Structure Determination
Related Article: Antti J. Neuvonen, Dimitris Noutsias, Filip Topić, Kari Rissanen, Tamás Földes, Imre Pápai, Petri M. Pihko|2019|J.Org.Chem.|84|15009|doi:10.1021/acs.joc.9b01980
CCDC 1831925: Experimental Crystal Structure Determination
Related Article: Filip Topić, Katarina Lisac, Mihails Arhangelskis, Kari Rissanen, Dominik Cinčić, Tomislav Friščić|2019|Chem.Commun.|55|14066|doi:10.1039/C9CC06735C
CCDC 2060888: Experimental Crystal Structure Determination
Related Article: Lucija Ptiček, Lucija Hok, Petra Grbčić, Filip Topić, Mario Cetina, Kari Rissanen, Sandra Kraljević Pavelić, Robert Vianello, Livio Racané|2021|Org.Biomol.Chem.|19|2784|doi:10.1039/D1OB00235J
CCDC 1469012: Experimental Crystal Structure Determination
Related Article: Filip Topić and Kari Rissanen|2016|J.Am.Chem.Soc.|138|6610|doi:10.1021/jacs.6b02854
CCDC 1514740: Experimental Crystal Structure Determination
Related Article: Sandra Kaabel, Jasper Adamson, Filip Topić, Anniina Kiesilä, Elina Kalenius, Mario Öeren, Mart Reimund, Elena Prigorchenko, Aivar Lõokene, Hans J. Reich, Kari Rissanen, Riina Aav|2017|Chemical Science|8|2184|doi:10.1039/C6SC05058A
CCDC 1899328: Experimental Crystal Structure Determination
Related Article: Ondřej Jurček, Rakesh Puttreddy, Filip Topić, Pia Jurček, Pezhman Zarabadi-Poor, Hendrik V. Schröder, Radek Marek, Kari Rissanen|2020|Cryst.Growth Des.|20|4193|doi:10.1021/acs.cgd.0c00532
CCDC 1557843: Experimental Crystal Structure Determination
Related Article: Filip Topić, Rakesh Puttreddy, J. Mikko Rautiainen, Heikki M. Tuononen, Kari Rissanen|2017|CrystEngComm|19|4960|doi:10.1039/C7CE01381G
CCDC 2060887: Experimental Crystal Structure Determination
Related Article: Lucija Ptiček, Lucija Hok, Petra Grbčić, Filip Topić, Mario Cetina, Kari Rissanen, Sandra Kraljević Pavelić, Robert Vianello, Livio Racané|2021|Org.Biomol.Chem.|19|2784|doi:10.1039/D1OB00235J
CCDC 1045984: Experimental Crystal Structure Determination
Related Article: Michele Bedin, Alavi Karim, Marcus Reitti, Anna-Carin C. Carlsson, Filip Topić, Mario Cetina, Fangfang Pan, Vaclav Havel, Fatima Al-Ameri, Vladimir Sindelar, Kari Rissanen, Jürgen Gräfenstein, Máté Erdélyi|2015|Chemical Science|6|3746|doi:10.1039/C5SC01053E
CCDC 1469004: Experimental Crystal Structure Determination
Related Article: Filip Topić and Kari Rissanen|2016|J.Am.Chem.Soc.|138|6610|doi:10.1021/jacs.6b02854
CCDC 1045981: Experimental Crystal Structure Determination
Related Article: Michele Bedin, Alavi Karim, Marcus Reitti, Anna-Carin C. Carlsson, Filip Topić, Mario Cetina, Fangfang Pan, Vaclav Havel, Fatima Al-Ameri, Vladimir Sindelar, Kari Rissanen, Jürgen Gräfenstein, Máté Erdélyi|2015|Chemical Science|6|3746|doi:10.1039/C5SC01053E
CCDC 945021: Experimental Crystal Structure Determination
Related Article: Christoph Gütz, Rainer Hovorka, Caroline Stobe, Niklas Struch, Filip Topić, Gregor Schnakenburg, Kari Rissanen, Arne Lützen|2014|Eur.J.Org.Chem.|2014|206|doi:10.1002/ejoc.201301314
CCDC 1557841: Experimental Crystal Structure Determination
Related Article: Filip Topić, Rakesh Puttreddy, J. Mikko Rautiainen, Heikki M. Tuononen, Kari Rissanen|2017|CrystEngComm|19|4960|doi:10.1039/C7CE01381G
CCDC 1514737: Experimental Crystal Structure Determination
Related Article: Sandra Kaabel, Jasper Adamson, Filip Topić, Anniina Kiesilä, Elina Kalenius, Mario Öeren, Mart Reimund, Elena Prigorchenko, Aivar Lõokene, Hans J. Reich, Kari Rissanen, Riina Aav|2017|Chemical Science|8|2184|doi:10.1039/C6SC05058A
CCDC 1824417: Experimental Crystal Structure Determination
Related Article: Lucia Volbach, Niklas Struch, Fabian Bohle, Filip Topić, Gregor Schnakenburg, Andreas Schneider, Kari Rissanen, Stefan Grimme, Arne Lützen|2020|Chem.-Eur.J.|26|3335|doi:10.1002/chem.201905070
CCDC 1469006: Experimental Crystal Structure Determination
Related Article: Filip Topić and Kari Rissanen|2016|J.Am.Chem.Soc.|138|6610|doi:10.1021/jacs.6b02854
CCDC 1008273: Experimental Crystal Structure Determination
Related Article: Biswa Nath Ghosh, Filip Topić, Prasit Kumar Sahoo, Prasenjit Mal, Jarno Linnera, Elina Kalenius, Heikki M. Tuononen, Kari Rissanen|2015|Dalton Trans.|44|254|doi:10.1039/C4DT02728K
CCDC 1469019: Experimental Crystal Structure Determination
Related Article: Filip Topić and Kari Rissanen|2016|J.Am.Chem.Soc.|138|6610|doi:10.1021/jacs.6b02854
CCDC 1831927: Experimental Crystal Structure Determination
Related Article: Filip Topić, Katarina Lisac, Mihails Arhangelskis, Kari Rissanen, Dominik Cinčić, Tomislav Friščić|2019|Chem.Commun.|55|14066|doi:10.1039/C9CC06735C
CCDC 1469020: Experimental Crystal Structure Determination
Related Article: Filip Topić and Kari Rissanen|2016|J.Am.Chem.Soc.|138|6610|doi:10.1021/jacs.6b02854
CCDC 1824416: Experimental Crystal Structure Determination
Related Article: Lucia Volbach, Niklas Struch, Fabian Bohle, Filip Topić, Gregor Schnakenburg, Andreas Schneider, Kari Rissanen, Stefan Grimme, Arne Lützen|2020|Chem.-Eur.J.|26|3335|doi:10.1002/chem.201905070
CCDC 1955599: Experimental Crystal Structure Determination
Related Article: Lucia Volbach, Niklas Struch, Fabian Bohle, Filip Topić, Gregor Schnakenburg, Andreas Schneider, Kari Rissanen, Stefan Grimme, Arne Lützen|2020|Chem.-Eur.J.|26|3335|doi:10.1002/chem.201905070
CCDC 945019: Experimental Crystal Structure Determination
Related Article: Christoph Gütz, Rainer Hovorka, Caroline Stobe, Niklas Struch, Filip Topić, Gregor Schnakenburg, Kari Rissanen, Arne Lützen|2014|Eur.J.Org.Chem.|2014|206|doi:10.1002/ejoc.201301314
CCDC 941619: Experimental Crystal Structure Determination
Related Article: Biswa Nath Ghosh, Filip Topić, Prasit Kumar Sahoo, Prasenjit Mal, Jarno Linnera, Elina Kalenius, Heikki M. Tuononen, Kari Rissanen|2015|Dalton Trans.|44|254|doi:10.1039/C4DT02728K
CCDC 1045982: Experimental Crystal Structure Determination
Related Article: Michele Bedin, Alavi Karim, Marcus Reitti, Anna-Carin C. Carlsson, Filip Topić, Mario Cetina, Fangfang Pan, Vaclav Havel, Fatima Al-Ameri, Vladimir Sindelar, Kari Rissanen, Jürgen Gräfenstein, Máté Erdélyi|2015|Chemical Science|6|3746|doi:10.1039/C5SC01053E
CCDC 1901895: Experimental Crystal Structure Determination
Related Article: Antti J. Neuvonen, Dimitris Noutsias, Filip Topić, Kari Rissanen, Tamás Földes, Imre Pápai, Petri M. Pihko|2019|J.Org.Chem.|84|15009|doi:10.1021/acs.joc.9b01980
CCDC 1557842: Experimental Crystal Structure Determination
Related Article: Filip Topić, Rakesh Puttreddy, J. Mikko Rautiainen, Heikki M. Tuononen, Kari Rissanen|2017|CrystEngComm|19|4960|doi:10.1039/C7CE01381G
CCDC 1557847: Experimental Crystal Structure Determination
Related Article: Filip Topić, Rakesh Puttreddy, J. Mikko Rautiainen, Heikki M. Tuononen, Kari Rissanen|2017|CrystEngComm|19|4960|doi:10.1039/C7CE01381G
CCDC 927272: Experimental Crystal Structure Determination
Related Article: Steven Moerkerke, Stéphane Le Gac, Filip Topić, Kari Rissanen and Ivan Jabin|2013|Eur.J.Org.Chem.|2013|5315|doi:10.1002/ejoc.201300639
CCDC 986177: Experimental Crystal Structure Determination
Related Article: Georg Meyer-Eppler, Filip Topić, Gregor Schnakenburg, Kari Rissanen, Arne Lützen|2014|Eur.J.Inorg.Chem.||2495|doi:10.1002/ejic.201402057
CCDC 1045992: Experimental Crystal Structure Determination
Related Article: Michele Bedin, Alavi Karim, Marcus Reitti, Anna-Carin C. Carlsson, Filip Topić, Mario Cetina, Fangfang Pan, Vaclav Havel, Fatima Al-Ameri, Vladimir Sindelar, Kari Rissanen, Jürgen Gräfenstein, Máté Erdélyi|2015|Chemical Science|6|3746|doi:10.1039/C5SC01053E
CCDC 1469009: Experimental Crystal Structure Determination
Related Article: Filip Topić and Kari Rissanen|2016|J.Am.Chem.Soc.|138|6610|doi:10.1021/jacs.6b02854
CCDC 2060884: Experimental Crystal Structure Determination
Related Article: Lucija Ptiček, Lucija Hok, Petra Grbčić, Filip Topić, Mario Cetina, Kari Rissanen, Sandra Kraljević Pavelić, Robert Vianello, Livio Racané|2021|Org.Biomol.Chem.|19|2784|doi:10.1039/D1OB00235J
CCDC 1539033: Experimental Crystal Structure Determination
Related Article: Jan-Constantin Christopherson, Karlie P. Potts, Oleksandr S. Bushuyev, Filip Topić, Igor Huskić, Kari Rissanen, Christopher J. Barrett, Tomislav Friščić|2017|Faraday Discuss.|203|441|doi:10.1039/C7FD00114B
CCDC 1469010: Experimental Crystal Structure Determination
Related Article: Filip Topić and Kari Rissanen|2016|J.Am.Chem.Soc.|138|6610|doi:10.1021/jacs.6b02854
CCDC 1901899: Experimental Crystal Structure Determination
Related Article: Antti J. Neuvonen, Dimitris Noutsias, Filip Topić, Kari Rissanen, Tamás Földes, Imre Pápai, Petri M. Pihko|2019|J.Org.Chem.|84|15009|doi:10.1021/acs.joc.9b01980
CCDC 2060886: Experimental Crystal Structure Determination
Related Article: Lucija Ptiček, Lucija Hok, Petra Grbčić, Filip Topić, Mario Cetina, Kari Rissanen, Sandra Kraljević Pavelić, Robert Vianello, Livio Racané|2021|Org.Biomol.Chem.|19|2784|doi:10.1039/D1OB00235J
CCDC 2060892: Experimental Crystal Structure Determination
Related Article: Lucija Ptiček, Lucija Hok, Petra Grbčić, Filip Topić, Mario Cetina, Kari Rissanen, Sandra Kraljević Pavelić, Robert Vianello, Livio Racané|2021|Org.Biomol.Chem.|19|2784|doi:10.1039/D1OB00235J
CCDC 1006931: Experimental Crystal Structure Determination
Related Article: Chandan Giri, Filip Topić, Prasenjit Mal, Kari Rissanen|2014|Dalton Trans.|43|15697|doi:10.1039/C4DT02180K
CCDC 1045991: Experimental Crystal Structure Determination
Related Article: Michele Bedin, Alavi Karim, Marcus Reitti, Anna-Carin C. Carlsson, Filip Topić, Mario Cetina, Fangfang Pan, Vaclav Havel, Fatima Al-Ameri, Vladimir Sindelar, Kari Rissanen, Jürgen Gräfenstein, Máté Erdélyi|2015|Chemical Science|6|3746|doi:10.1039/C5SC01053E
CCDC 1959539: Experimental Crystal Structure Determination
Related Article: Ondřej Jurček, Rakesh Puttreddy, Filip Topić, Pia Jurček, Pezhman Zarabadi-Poor, Hendrik V. Schröder, Radek Marek, Kari Rissanen|2020|Cryst.Growth Des.|20|4193|doi:10.1021/acs.cgd.0c00532
CCDC 1003004: Experimental Crystal Structure Determination
Related Article: Christoph Gütz , Rainer Hovorka , Niklas Struch , Jens Bunzen , Georg Meyer-Eppler , Zheng-Wang Qu , Stefan Grimme , Filip Topić, Kari Rissanen, Mario Cetina, Marianne Engeser, Arne Lützen|2014|J.Am.Chem.Soc.|136|11830|doi:10.1021/ja506327c
CCDC 1901897: Experimental Crystal Structure Determination
Related Article: Antti J. Neuvonen, Dimitris Noutsias, Filip Topić, Kari Rissanen, Tamás Földes, Imre Pápai, Petri M. Pihko|2019|J.Org.Chem.|84|15009|doi:10.1021/acs.joc.9b01980
CCDC 1062271: Experimental Crystal Structure Determination
Related Article: Pia Bonakdarzadeh, Filip Topić, Elina Kalenius, Sandip Bhowmik, Sota Sato, Michael Groessl, Richard Knochenmuss, Kari Rissanen|2015|Inorg.Chem.|54|6055|doi:10.1021/acs.inorgchem.5b01082
CCDC 1901898: Experimental Crystal Structure Determination
Related Article: Antti J. Neuvonen, Dimitris Noutsias, Filip Topić, Kari Rissanen, Tamás Földes, Imre Pápai, Petri M. Pihko|2019|J.Org.Chem.|84|15009|doi:10.1021/acs.joc.9b01980
CCDC 1008276: Experimental Crystal Structure Determination
Related Article: Biswa Nath Ghosh, Filip Topić, Prasit Kumar Sahoo, Prasenjit Mal, Jarno Linnera, Elina Kalenius, Heikki M. Tuononen, Kari Rissanen|2015|Dalton Trans.|44|254|doi:10.1039/C4DT02728K
CCDC 2060893: Experimental Crystal Structure Determination
Related Article: Lucija Ptiček, Lucija Hok, Petra Grbčić, Filip Topić, Mario Cetina, Kari Rissanen, Sandra Kraljević Pavelić, Robert Vianello, Livio Racané|2021|Org.Biomol.Chem.|19|2784|doi:10.1039/D1OB00235J
CCDC 1541407: Experimental Crystal Structure Determination
Related Article: Gaël De Leener, Diana Over, Coryse Smet, Damien Cornut, Ana Gabriela Porras-Gutierrez, Isidoro López, Bénédicte Douziech, Nicolas Le Poul, Filip Topić, Kari Rissanen, Yves Le Mest, Ivan Jabin, and Olivia Reinaud|2017|Inorg.Chem.|56|10971|doi:10.1021/acs.inorgchem.7b01225
CCDC 1541408: Experimental Crystal Structure Determination
Related Article: Gaël De Leener, Diana Over, Coryse Smet, Damien Cornut, Ana Gabriela Porras-Gutierrez, Isidoro López, Bénédicte Douziech, Nicolas Le Poul, Filip Topić, Kari Rissanen, Yves Le Mest, Ivan Jabin, and Olivia Reinaud|2017|Inorg.Chem.|56|10971|doi:10.1021/acs.inorgchem.7b01225
CCDC 999739: Experimental Crystal Structure Determination
Related Article: Rainer Hovorka, Georg Meyer-Eppler, Torsten Piehler, Sophie Hytteballe, Marianne Engeser, Filip Topić, Kari Rissanen, Arne Lützen|2014|Chem.-Eur.J.|20|13253|doi:10.1002/chem.201403414
CCDC 1045989: Experimental Crystal Structure Determination
Related Article: Michele Bedin, Alavi Karim, Marcus Reitti, Anna-Carin C. Carlsson, Filip Topić, Mario Cetina, Fangfang Pan, Vaclav Havel, Fatima Al-Ameri, Vladimir Sindelar, Kari Rissanen, Jürgen Gräfenstein, Máté Erdélyi|2015|Chemical Science|6|3746|doi:10.1039/C5SC01053E
CCDC 1006930: Experimental Crystal Structure Determination
Related Article: Chandan Giri, Filip Topić, Prasenjit Mal, Kari Rissanen|2014|Dalton Trans.|43|15697|doi:10.1039/C4DT02180K
CCDC 2060890: Experimental Crystal Structure Determination
Related Article: Lucija Ptiček, Lucija Hok, Petra Grbčić, Filip Topić, Mario Cetina, Kari Rissanen, Sandra Kraljević Pavelić, Robert Vianello, Livio Racané|2021|Org.Biomol.Chem.|19|2784|doi:10.1039/D1OB00235J
CCDC 2060889: Experimental Crystal Structure Determination
Related Article: Lucija Ptiček, Lucija Hok, Petra Grbčić, Filip Topić, Mario Cetina, Kari Rissanen, Sandra Kraljević Pavelić, Robert Vianello, Livio Racané|2021|Org.Biomol.Chem.|19|2784|doi:10.1039/D1OB00235J
CCDC 1469016: Experimental Crystal Structure Determination
Related Article: Filip Topić and Kari Rissanen|2016|J.Am.Chem.Soc.|138|6610|doi:10.1021/jacs.6b02854
CCDC 1045994: Experimental Crystal Structure Determination
Related Article: Michele Bedin, Alavi Karim, Marcus Reitti, Anna-Carin C. Carlsson, Filip Topić, Mario Cetina, Fangfang Pan, Vaclav Havel, Fatima Al-Ameri, Vladimir Sindelar, Kari Rissanen, Jürgen Gräfenstein, Máté Erdélyi|2015|Chemical Science|6|3746|doi:10.1039/C5SC01053E
CCDC 1054511: Experimental Crystal Structure Determination
Related Article: Chandan Giri, Filip Topić, Massimo Cametti, Kari Rissanen|2015|Chemical Science|6|5712|doi:10.1039/C5SC01851J
CCDC 1002402: Experimental Crystal Structure Determination
Related Article: Chandan Giri, Filip Topić, Prasenjit Mal, Kari Rissanen|2014|Dalton Trans.|43|17889|doi:10.1039/C4DT02754J
CCDC 1899329: Experimental Crystal Structure Determination
Related Article: Ondřej Jurček, Rakesh Puttreddy, Filip Topić, Pia Jurček, Pezhman Zarabadi-Poor, Hendrik V. Schröder, Radek Marek, Kari Rissanen|2020|Cryst.Growth Des.|20|4193|doi:10.1021/acs.cgd.0c00532
CCDC 1831924: Experimental Crystal Structure Determination
Related Article: Filip Topić, Katarina Lisac, Mihails Arhangelskis, Kari Rissanen, Dominik Cinčić, Tomislav Friščić|2019|Chem.Commun.|55|14066|doi:10.1039/C9CC06735C
CCDC 1469007: Experimental Crystal Structure Determination
Related Article: Filip Topić and Kari Rissanen|2016|J.Am.Chem.Soc.|138|6610|doi:10.1021/jacs.6b02854
CCDC 1514738: Experimental Crystal Structure Determination
Related Article: Sandra Kaabel, Jasper Adamson, Filip Topić, Anniina Kiesilä, Elina Kalenius, Mario Öeren, Mart Reimund, Elena Prigorchenko, Aivar Lõokene, Hans J. Reich, Kari Rissanen, Riina Aav|2017|Chemical Science|8|2184|doi:10.1039/C6SC05058A
CCDC 1514739: Experimental Crystal Structure Determination
Related Article: Sandra Kaabel, Jasper Adamson, Filip Topić, Anniina Kiesilä, Elina Kalenius, Mario Öeren, Mart Reimund, Elena Prigorchenko, Aivar Lõokene, Hans J. Reich, Kari Rissanen, Riina Aav|2017|Chemical Science|8|2184|doi:10.1039/C6SC05058A
CCDC 1469013: Experimental Crystal Structure Determination
Related Article: Filip Topić and Kari Rissanen|2016|J.Am.Chem.Soc.|138|6610|doi:10.1021/jacs.6b02854
CCDC 1469011: Experimental Crystal Structure Determination
Related Article: Filip Topić and Kari Rissanen|2016|J.Am.Chem.Soc.|138|6610|doi:10.1021/jacs.6b02854
CCDC 986178: Experimental Crystal Structure Determination
Related Article: Georg Meyer-Eppler, Filip Topić, Gregor Schnakenburg, Kari Rissanen, Arne Lützen|2014|Eur.J.Inorg.Chem.||2495|doi:10.1002/ejic.201402057
CCDC 1899330: Experimental Crystal Structure Determination
Related Article: Ondřej Jurček, Rakesh Puttreddy, Filip Topić, Pia Jurček, Pezhman Zarabadi-Poor, Hendrik V. Schröder, Radek Marek, Kari Rissanen|2020|Cryst.Growth Des.|20|4193|doi:10.1021/acs.cgd.0c00532
CCDC 1899331: Experimental Crystal Structure Determination
Related Article: Ondřej Jurček, Rakesh Puttreddy, Filip Topić, Pia Jurček, Pezhman Zarabadi-Poor, Hendrik V. Schröder, Radek Marek, Kari Rissanen|2020|Cryst.Growth Des.|20|4193|doi:10.1021/acs.cgd.0c00532
CCDC 1062270: Experimental Crystal Structure Determination
Related Article: Pia Bonakdarzadeh, Filip Topić, Elina Kalenius, Sandip Bhowmik, Sota Sato, Michael Groessl, Richard Knochenmuss, Kari Rissanen|2015|Inorg.Chem.|54|6055|doi:10.1021/acs.inorgchem.5b01082
Chiral hemicucurbit[8]uril as an anion receptor: selectivity to size, shape and charge distribution
Chiral (all-R)-cyclohexanohemicucurbit[8]uril binds anions in a 1 : 1 ratio in pure methanol like a molecular Pac-Man™ with remarkable selectivity based on the size, shape and charge distribution of the anion.
CCDC 1469015: Experimental Crystal Structure Determination
Related Article: Filip Topić and Kari Rissanen|2016|J.Am.Chem.Soc.|138|6610|doi:10.1021/jacs.6b02854
CCDC 971933: Experimental Crystal Structure Determination
Related Article: Rainer Hovorka, Sophie Hytteballe, Torsten Piehler, Georg Meyer-Eppler, Filip Topić, Kari Rissanen, Marianne Engeser, Arne Lützen|2014|Beilstein J.Org.Chem.|10|432|doi:10.3762/bjoc.10.40
CCDC 941094: Experimental Crystal Structure Determination
Related Article: Christoph Gütz, Rainer Hovorka, Caroline Stobe, Niklas Struch, Filip Topić, Gregor Schnakenburg, Kari Rissanen, Arne Lützen|2014|Eur.J.Org.Chem.|2014|206|doi:10.1002/ejoc.201301314
CCDC 1045985: Experimental Crystal Structure Determination
Related Article: Michele Bedin, Alavi Karim, Marcus Reitti, Anna-Carin C. Carlsson, Filip Topić, Mario Cetina, Fangfang Pan, Vaclav Havel, Fatima Al-Ameri, Vladimir Sindelar, Kari Rissanen, Jürgen Gräfenstein, Máté Erdélyi|2015|Chemical Science|6|3746|doi:10.1039/C5SC01053E
CCDC 945020: Experimental Crystal Structure Determination
Related Article: Christoph Gütz, Rainer Hovorka, Caroline Stobe, Niklas Struch, Filip Topić, Gregor Schnakenburg, Kari Rissanen, Arne Lützen|2014|Eur.J.Org.Chem.|2014|206|doi:10.1002/ejoc.201301314
CCDC 1469022: Experimental Crystal Structure Determination
Related Article: Filip Topić and Kari Rissanen|2016|J.Am.Chem.Soc.|138|6610|doi:10.1021/jacs.6b02854
CCDC 1469014: Experimental Crystal Structure Determination
Related Article: Filip Topić and Kari Rissanen|2016|J.Am.Chem.Soc.|138|6610|doi:10.1021/jacs.6b02854
CCDC 1901893: Experimental Crystal Structure Determination
Related Article: Antti J. Neuvonen, Dimitris Noutsias, Filip Topić, Kari Rissanen, Tamás Földes, Imre Pápai, Petri M. Pihko|2019|J.Org.Chem.|84|15009|doi:10.1021/acs.joc.9b01980
CCDC 1831926: Experimental Crystal Structure Determination
Related Article: Filip Topić, Katarina Lisac, Mihails Arhangelskis, Kari Rissanen, Dominik Cinčić, Tomislav Friščić|2019|Chem.Commun.|55|14066|doi:10.1039/C9CC06735C
CCDC 1469017: Experimental Crystal Structure Determination
Related Article: Filip Topić and Kari Rissanen|2016|J.Am.Chem.Soc.|138|6610|doi:10.1021/jacs.6b02854
CCDC 1469005: Experimental Crystal Structure Determination
Related Article: Filip Topić and Kari Rissanen|2016|J.Am.Chem.Soc.|138|6610|doi:10.1021/jacs.6b02854
CCDC 1901896: Experimental Crystal Structure Determination
Related Article: Antti J. Neuvonen, Dimitris Noutsias, Filip Topić, Kari Rissanen, Tamás Földes, Imre Pápai, Petri M. Pihko|2019|J.Org.Chem.|84|15009|doi:10.1021/acs.joc.9b01980
CCDC 927271: Experimental Crystal Structure Determination
Related Article: Steven Moerkerke, Stéphane Le Gac, Filip Topić, Kari Rissanen and Ivan Jabin|2013|Eur.J.Org.Chem.|2013|5315|doi:10.1002/ejoc.201300639
CCDC 941095: Experimental Crystal Structure Determination
Related Article: Christoph Gütz, Rainer Hovorka, Caroline Stobe, Niklas Struch, Filip Topić, Gregor Schnakenburg, Kari Rissanen, Arne Lützen|2014|Eur.J.Org.Chem.|2014|206|doi:10.1002/ejoc.201301314
CCDC 1469008: Experimental Crystal Structure Determination
Related Article: Filip Topić and Kari Rissanen|2016|J.Am.Chem.Soc.|138|6610|doi:10.1021/jacs.6b02854
CCDC 1428619: Experimental Crystal Structure Determination
Related Article: Angélique Lascaux, Gaël De Leener, Luca Fusaro, Filip Topić, Kari Rissanen, Michel Luhmer, Ivan Jabin|2016|Org.Biomol.Chem.|14|738|doi:10.1039/C5OB02067K
CCDC 1955601: Experimental Crystal Structure Determination
Related Article: Lucia Volbach, Niklas Struch, Fabian Bohle, Filip Topić, Gregor Schnakenburg, Andreas Schneider, Kari Rissanen, Stefan Grimme, Arne Lützen|2020|Chem.-Eur.J.|26|3335|doi:10.1002/chem.201905070
CCDC 1008275: Experimental Crystal Structure Determination
Related Article: Biswa Nath Ghosh, Filip Topić, Prasit Kumar Sahoo, Prasenjit Mal, Jarno Linnera, Elina Kalenius, Heikki M. Tuononen, Kari Rissanen|2015|Dalton Trans.|44|254|doi:10.1039/C4DT02728K
CCDC 1054510: Experimental Crystal Structure Determination
Related Article: Chandan Giri, Filip Topić, Massimo Cametti, Kari Rissanen|2015|Chemical Science|6|5712|doi:10.1039/C5SC01851J
CCDC 1054512: Experimental Crystal Structure Determination
Related Article: Chandan Giri, Filip Topić, Massimo Cametti, Kari Rissanen|2015|Chemical Science|6|5712|doi:10.1039/C5SC01851J
CCDC 938919: Experimental Crystal Structure Determination
Related Article: Gaston R. Schaller, Filip Topić, Kari Rissanen, Yoshio Okamoto, Jun Shen, Rainer Herges|2014|Nature Chemistry|6|608|doi:10.1038/NCHEM.1955
CCDC 1469018: Experimental Crystal Structure Determination
Related Article: Filip Topić and Kari Rissanen|2016|J.Am.Chem.Soc.|138|6610|doi:10.1021/jacs.6b02854
CCDC 1428618: Experimental Crystal Structure Determination
Related Article: Angélique Lascaux, Gaël De Leener, Luca Fusaro, Filip Topić, Kari Rissanen, Michel Luhmer, Ivan Jabin|2016|Org.Biomol.Chem.|14|738|doi:10.1039/C5OB02067K
CCDC 1045993: Experimental Crystal Structure Determination
Related Article: Michele Bedin, Alavi Karim, Marcus Reitti, Anna-Carin C. Carlsson, Filip Topić, Mario Cetina, Fangfang Pan, Vaclav Havel, Fatima Al-Ameri, Vladimir Sindelar, Kari Rissanen, Jürgen Gräfenstein, Máté Erdélyi|2015|Chemical Science|6|3746|doi:10.1039/C5SC01053E
CCDC 982088: Experimental Crystal Structure Determination
Related Article: Christoph Klein, Christoph Gütz, Maximilian Bogner, Filip Topić, Kari Rissanen, Arne Lützen|2014|Angew.Chem.,Int.Ed.|53|3739|doi:10.1002/anie.201400626
CCDC 1054509: Experimental Crystal Structure Determination
Related Article: Chandan Giri, Filip Topić, Massimo Cametti, Kari Rissanen|2015|Chemical Science|6|5712|doi:10.1039/C5SC01851J
CCDC 1831928: Experimental Crystal Structure Determination
Related Article: Filip Topić, Katarina Lisac, Mihails Arhangelskis, Kari Rissanen, Dominik Cinčić, Tomislav Friščić|2019|Chem.Commun.|55|14066|doi:10.1039/C9CC06735C
CCDC 1955600: Experimental Crystal Structure Determination
Related Article: Lucia Volbach, Niklas Struch, Fabian Bohle, Filip Topić, Gregor Schnakenburg, Andreas Schneider, Kari Rissanen, Stefan Grimme, Arne Lützen|2020|Chem.-Eur.J.|26|3335|doi:10.1002/chem.201905070
CCDC 1045986: Experimental Crystal Structure Determination
Related Article: Michele Bedin, Alavi Karim, Marcus Reitti, Anna-Carin C. Carlsson, Filip Topić, Mario Cetina, Fangfang Pan, Vaclav Havel, Fatima Al-Ameri, Vladimir Sindelar, Kari Rissanen, Jürgen Gräfenstein, Máté Erdélyi|2015|Chemical Science|6|3746|doi:10.1039/C5SC01053E
CCDC 2060894: Experimental Crystal Structure Determination
Related Article: Lucija Ptiček, Lucija Hok, Petra Grbčić, Filip Topić, Mario Cetina, Kari Rissanen, Sandra Kraljević Pavelić, Robert Vianello, Livio Racané|2021|Org.Biomol.Chem.|19|2784|doi:10.1039/D1OB00235J
CCDC 1521388: Experimental Crystal Structure Determination
Related Article: Sandra Kaabel, Jasper Adamson, Filip Topić, Anniina Kiesilä, Elina Kalenius, Mario Öeren, Mart Reimund, Elena Prigorchenko, Aivar Lõokene, Hans J. Reich, Kari Rissanen, Riina Aav|2017|Chemical Science|8|2184|doi:10.1039/C6SC05058A
CCDC 1959492: Experimental Crystal Structure Determination
Related Article: Roy Lavendomme, Florent Desroches, Steven Moerkerke, Filip Topić, Johan Wouters, Kari Rissanen, Michel Luhmer, Ivan Jabin|2020|Supramol.Chem.|32|23|doi:10.1080/10610278.2019.1679374
CCDC 1514736: Experimental Crystal Structure Determination
Related Article: Sandra Kaabel, Jasper Adamson, Filip Topić, Anniina Kiesilä, Elina Kalenius, Mario Öeren, Mart Reimund, Elena Prigorchenko, Aivar Lõokene, Hans J. Reich, Kari Rissanen, Riina Aav|2017|Chemical Science|8|2184|doi:10.1039/C6SC05058A
CCDC 1514741: Experimental Crystal Structure Determination
Related Article: Sandra Kaabel, Jasper Adamson, Filip Topić, Anniina Kiesilä, Elina Kalenius, Mario Öeren, Mart Reimund, Elena Prigorchenko, Aivar Lõokene, Hans J. Reich, Kari Rissanen, Riina Aav|2017|Chemical Science|8|2184|doi:10.1039/C6SC05058A
CCDC 1469024: Experimental Crystal Structure Determination
Related Article: Filip Topić and Kari Rissanen|2016|J.Am.Chem.Soc.|138|6610|doi:10.1021/jacs.6b02854
CCDC 1008274: Experimental Crystal Structure Determination
Related Article: Biswa Nath Ghosh, Filip Topić, Prasit Kumar Sahoo, Prasenjit Mal, Jarno Linnera, Elina Kalenius, Heikki M. Tuononen, Kari Rissanen|2015|Dalton Trans.|44|254|doi:10.1039/C4DT02728K