0000000001212387
AUTHOR
Dm Cox
Evidence for octupole collectivity in $$^{172}{\mathrm {Pt}}$$172Pt
Multiple chiral bands in Nd-137
alpha-spectroscopy studies of the new nuclides Pt-165 and Hg-170
In-beam study of No-253 using the SAGE spectrometer
α -decay spectroscopy of the N=130 isotones Ra 218 and Th 220: Mitigation of α -particle energy summing with implanted nuclei
An analysis technique has been developed in order to mitigate energy summing due to sequential short-lived α decays from nuclei implanted into a silicon detector. Using this technique, α-decay spectroscopy of the N=130 isotones Ra218 (Z=88) and Th220 (Z=90) has been performed. The energies of the α particles emitted in the Ra218→Rn214 and Th220→Ra216 ground-state-to-ground-state decays have been measured to be 8381(4) keV and 8818(13) keV, respectively. The half-lives of the ground states of Ra218 and Th220 have been measured to be 25.99(10) μs and 10.4(4) μs, respectively. The half-lives of the ground states of the α-decay daughters, Rn214 and Ra216, have been measured to be 259(3) ns and …
alpha-decay spectroscopy of the N=130 isotones Ra-218 and Th-220: Mitigation of alpha-particle energy summing with implanted nuclei
⁴⁸Ca+²⁴⁹Bk Fusion Reaction Leading to Element Z=117: Long-Lived alpha-Decaying ²⁷⁰Db and Discovery of ²⁶⁶Lr
Ca-48+Bk-249 Fusion Reaction Leading to Element Z=117: Long-Lived alpha-Decaying (270)Db and Discovery of Lr-266
The superheavy element with atomic number Z=117 was produced as an evaporation residue in the 48Ca+249Bk fusion reaction at the gas-filled recoil separator TASCA at GSI Darmstadt, Germany. The radioactive decay of evaporation residues and their α-decay products was studied using a detection setup that allowed measuring decays of single atomic nuclei with half-lives between sub-μs and a few days. Two decay chains comprising seven α decays and a spontaneous fission each were identified and are assigned to the isotope 294117 and its decay products. A hitherto unknown α-decay branch in 270Db (Z=105) was observed, which populated the new isotope 266Lr (Z=103). The identification of the long-live…
In-beam gamma-ray and electron spectroscopy of Md-249,Md-251
New Short-Lived Isotope U-221 and the Mass Surface Near N=126
Two short-lived isotopes 221U and 222U were produced as evaporation residues in the fusion reaction 50Ti+176Yb at the gas-filled recoil separator TASCA. An α decay with an energy of Eα=9.31(5) MeV and half-life T1/2=4.7(7) μs was attributed to 222U. The new isotope 221U was identified in α-decay chains starting with Eα=9.71(5) MeV and T1/2=0.66(14) μs leading to known daughters. Synthesis and detection of these unstable heavy nuclei and their descendants were achieved thanks to a fast data readout system. The evolution of the N=126 shell closure and its influence on the stability of uranium isotopes are discussed within the framework of α-decay reduced width.