0000000001212942

AUTHOR

Sanja Aveic

showing 3 related works from this author

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) 1

2021

Contains fulltext : 232759.pdf (Publisher’s version ) (Closed access) In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to…

0301 basic medicineProgrammed cell deathSettore BIO/06AutophagosomeAutolysosome[SDV]Life Sciences [q-bio]lnfectious Diseases and Global Health Radboud Institute for Molecular Life Sciences [Radboudumc 4]Autophagy-Related ProteinsReviewComputational biology[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologySettore MED/0403 medical and health sciencesstressChaperone-mediated autophagyddc:570AutophagyLC3AnimalsHumanscancerSettore BIO/10Autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSet (psychology)Molecular Biologyvacuole.phagophore030102 biochemistry & molecular biologyvacuolebusiness.industryInterpretation (philosophy)AutophagyAutophagosomesneurodegenerationCell BiologyfluxMulticellular organismmacroautophagy030104 developmental biologyKnowledge baselysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleBiological AssayLysosomesbusinessBiomarkers[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

Autophagy

2021

In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide…

macroautophagy;autophagyAutophagosome[SDV]Life Sciences [q-bio]canceLC3 macroautophagyautophagosomeneurodegeneration;[SDV.BC]Life Sciences [q-bio]/Cellular BiologyAutophagy AutophagosomeNOstress vacuolestressautophagic processesstrerfluxLC3cancerguidelinesAutophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/06 - Anatomia Comparata E Citologia[SDV.BC] Life Sciences [q-bio]/Cellular BiologyComputingMilieux_MISCELLANEOUSMedaka oryzias latipesphagophorevacuoleQHneurodegenerationAutophagosome cancer flux LC3 lysosome macroautophagy neurodegeneration phagophore stress vacuoleautophagy; autophagic processes; guidelines; autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuolefluxmacroautophagystress.lysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/17 - ISTOLOGIARC
researchProduct

Integrated CGH/WES Analyses Advance Understanding of Aggressive Neuroblastoma Evolution: A Case Study

2021

Neuroblastoma (NB) is the most common extra-cranial malignancy in preschool children. To portray the genetic landscape of an overly aggressive NB leading to a rapid clinical progression of the disease, tumor DNA collected pre- and post-treatment has been analyzed. Array comparative genomic hybridization (aCGH), whole-exome sequencing (WES), and pharmacogenetics approaches, respectively, have identified relevant copy number alterations (CNAs), single nucleotide variants (SNVs), and polymorphisms (SNPs) that were then combined into an integrated analysis. Spontaneously formed 3D tumoroids obtained from the recurrent mass have also been characterized. The results prove the power of combining C…

3D tumoroids; Array CGH; Clonal evolution; Neuroblastoma; Pharmacogenetics; Recurrent tumor; Single nucleotide variants; Whole exome sequencing; Child Preschool; Disease Progression; Drug Resistance Neoplasm; Fatal Outcome; Humans; Immunophenotyping; Neuroblastoma; Polymorphism Single Nucleotide; Comparative Genomic Hybridization; Whole Exome SequencingQH301-705.5Drug Resistanceclonal evolutionCase Report3D tumoroidsSingle-nucleotide polymorphismDiseaseComputational biologyBiologyMalignancyPolymorphism Single NucleotideSomatic evolution in cancerImmunophenotypingwhole exome sequencingNeuroblastomaFatal OutcomeNeuroblastomaExome SequencingmedicineHumansarray CGHrecurrent tumorPolymorphismBiology (General)ChildPreschoolExome sequencingTumorsComparative Genomic HybridizationSingle NucleotideGeneral Medicinemedicine.diseaseSingle nucleotide variantsDrug Resistance NeoplasmPharmacogeneticsChild PreschoolDisease ProgressionFarmacogenèticaNeoplasmPharmacogeneticsComparative genomic hybridization
researchProduct