0000000001213244

AUTHOR

Frédéric Checler

showing 4 related works from this author

The disintegrin ADAM9 indirectly contributes to the physiological processing of cellular prion by modulating ADAM10 activity

2005

The cellular prion protein (PrP(c)) is physiologically cleaved in the middle of its 106-126 amino acid neurotoxic region at the 110/111 downward arrow112 peptidyl bond, yielding an N-terminal fragment referred to as N1. We recently demonstrated that two disintegrins, namely ADAM10 and ADAM17 (TACE, tumor necrosis factor alpha converting enzyme) participated in both constitutive and protein kinase C-regulated generation of N1, respectively. These proteolytic events were strikingly reminiscent of those involved in the so-called "alpha-secretase pathway" that leads to the production of secreted sAPPalpha from betaAPP. We show here, by transient and stable transfection analyses, that ADAM9 also…

DNA ComplementaryADAM10Gene ExpressionTransfectionBiochemistryDNA AntisenseCell LineAmyloid beta-Protein PrecursorMice03 medical and health sciences0302 clinical medicineEndopeptidasesDisintegrinAnimalsAspartic Acid EndopeptidasesHumansPrPC Proteins[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyProtein kinase AMolecular Biology030304 developmental biologyMice Knockout0303 health sciencesbiologyHEK 293 cells030302 biochemistry & molecular biologyMembrane ProteinsTransfectionCell BiologyFibroblastsPeptide FragmentsADAM ProteinsBiochemistryCell culturebiology.proteinAdditions and CorrectionsAmyloid Precursor Protein SecretasesADAM9Amyloid precursor protein secretase030217 neurology & neurosurgery
researchProduct

Melatonin stimulates the nonamyloidogenic processing ofβAPP through the positive transcriptional regulation of ADAM10 and ADAM17

2014

Melatonin controls many physiological functions including regulation of the circadian rhythm and clearance of free radicals and neuroprotection. Importantly, melatonin levels strongly decrease as we age and patients with Alzheimer's disease (AD) display lower melatonin than age-matched controls. Several studies have reported that melatonin can reduce aggregation and toxicity of amyloid-β peptides that are produced from the β-amyloid precursor protein (βAPP). However, whether melatonin can directly regulate the βAPP-cleaving proteases ('secretases') has not been investigated so far. In this study, we establish that melatonin stimulates the α-secretase cleavage of βAPP in cultured neuronal an…

endocrine systemmedicine.medical_specialtyProteasesADAM10Blotting WesternApoptosisADAM17 ProteinBiologyMelatonin receptorNeuroprotectionMelatoninADAM10 ProteinAmyloid beta-Protein PrecursorTransactivationEndocrinologyInternal medicinemedicineHumansPhosphorylationPromoter Regions GeneticMelatoninMembrane ProteinsADAM ProteinsHEK293 CellsEndocrinologyGene Expression Regulationbiology.proteinPhosphorylationAmyloid Precursor Protein SecretasesAmyloid precursor protein secretasehormones hormone substitutes and hormone antagonistsmedicine.drugJournal of Pineal Research
researchProduct

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) 1

2021

Contains fulltext : 232759.pdf (Publisher’s version ) (Closed access) In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to…

0301 basic medicineProgrammed cell deathSettore BIO/06AutophagosomeAutolysosome[SDV]Life Sciences [q-bio]lnfectious Diseases and Global Health Radboud Institute for Molecular Life Sciences [Radboudumc 4]Autophagy-Related ProteinsReviewComputational biology[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologySettore MED/0403 medical and health sciencesstressChaperone-mediated autophagyddc:570AutophagyLC3AnimalsHumanscancerSettore BIO/10Autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSet (psychology)Molecular Biologyvacuole.phagophore030102 biochemistry & molecular biologyvacuolebusiness.industryInterpretation (philosophy)AutophagyAutophagosomesneurodegenerationCell BiologyfluxMulticellular organismmacroautophagy030104 developmental biologyKnowledge baselysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleBiological AssayLysosomesbusinessBiomarkers[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

Autophagy

2021

In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide…

macroautophagy;autophagyAutophagosome[SDV]Life Sciences [q-bio]canceLC3 macroautophagyautophagosomeneurodegeneration;[SDV.BC]Life Sciences [q-bio]/Cellular BiologyAutophagy AutophagosomeNOstress vacuolestressautophagic processesstrerfluxLC3cancerguidelinesAutophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/06 - Anatomia Comparata E Citologia[SDV.BC] Life Sciences [q-bio]/Cellular BiologyComputingMilieux_MISCELLANEOUSMedaka oryzias latipesphagophorevacuoleQHneurodegenerationAutophagosome cancer flux LC3 lysosome macroautophagy neurodegeneration phagophore stress vacuoleautophagy; autophagic processes; guidelines; autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuolefluxmacroautophagystress.lysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/17 - ISTOLOGIARC
researchProduct