0000000001213245

AUTHOR

Michael E. Cheetham

showing 10 related works from this author

PCARE and WASF3 regulate ciliary F-actin assembly that is required for the initiation of photoreceptor outer segment disk formation

2020

Significance The photoreceptor outer segments are primary cilia, modified for phototransduction by incorporation of stacked opsin-loaded membrane disks that are continuously regenerated. This process is disrupted in several types of inherited retinal dystrophy, but the driving force remained unclear. We show that C2orf71/PCARE (photoreceptor cilium actin regulator), associated with inherited retinal dystrophy subtype RP54, efficiently recruits the Arp2/3 complex activator WASF3 to the cilium. This activates an actin dynamics-driven expansion of the ciliary tip, resembling membrane evagination in lamellipodia formation. Colocalization of this actin dynamics module to the base of the outer se…

ciliummacromolecular substancesSensory disorders Donders Center for Medical Neuroscience [Radboudumc 12]Actin-Related Protein 2-3 Complexchemistry.chemical_compoundMiceAll institutes and research themes of the Radboud University Medical Centerretinitis pigmentosaRetinitis pigmentosamedicineGeneticsAnimalsHumansCiliaRNA Small InterferingCiliary tipEye ProteinsCiliary membraneActinMice KnockoutMultidisciplinaryCiliumouter segmentsRetinalBiological Sciencesmedicine.diseaseRod Cell Outer SegmentPhotoreceptor outer segmentphotoreceptorActinsCell biologyWiskott-Aldrich Syndrome Protein FamilyDisease Models AnimalRenal disorders Radboud Institute for Molecular Life Sciences [Radboudumc 11]chemistryPNAS PlusGene Expression RegulationRetinal Cone Photoreceptor Cellssense organsactinCone-Rod DystrophiesVisual phototransductionProceedings of the National Academy of Sciences USA
researchProduct

TOPORS, implicated in retinal degeneration, is a cilia-centrosomal protein.

2011

et al.

Retinal degenerationUbiquitin-Protein LigasesBiologymedicine.disease_causeRetinaCell Line03 medical and health scienceschemistry.chemical_compoundMiceNuclear proteins0302 clinical medicineIntraflagellar transportGeneticsmedicineBasal bodyAnimalsHumansPhotoreceptor CellsCiliaMolecular BiologyZebrafishGenetics (clinical)Cells CulturedZebrafish030304 developmental biologyCentrosome0303 health sciencesRetinaMutationUbiquitinCiliumRetinal DegenerationNuclear ProteinsRetinalTOPORS proteinGeneral MedicineArticlesmedicine.diseasebiology.organism_classification3. Good healthCell biologyNeoplasm ProteinsProtein Transportmedicine.anatomical_structurechemistryNeoplasm proteinssense organs030217 neurology & neurosurgeryHuman molecular genetics
researchProduct

The retinitis pigmentosa protein RP2 links pericentriolar vesicle transport between the Golgi and the primary cilium.

2010

Photoreceptors are complex ciliated sensory neurons. The basal body and periciliary ridge of photoreceptors function in association with the Golgi complex to regulate the export of proteins from the inner segment to the outer segment sensory axoneme. Here, we show that the retinitis pigmentosa protein RP2, which is a GTPase activating protein (GAP) for Arl3, localizes to the ciliary apparatus, namely the basal body and the associated centriole at the base of the photoreceptor cilium. Targeting to the ciliary base was dependent on N-terminal myristoylation. RP2 also localized to the Golgi and periciliary ridge of photoreceptors, which suggested a role for RP2 in regulating vesicle traffic an…

CentriolePhotoreceptor Connecting CiliumGolgi ApparatusBiologysymbols.namesakeMiceIntraflagellar transportGTP-Binding ProteinsGeneticsBasal bodyAnimalsHumansKIF3APhotoreceptor CellsCiliaEye ProteinsTransport VesiclesMolecular BiologyGenetics (clinical)Cells CulturedCentriolesADP-Ribosylation FactorsCiliumCiliary BodyIntracellular Signaling Peptides and ProteinsMembrane ProteinsBiological TransportGeneral MedicineGolgi apparatusCell biologysymbolssense organsCiliary baseRetinitis PigmentosaHuman molecular genetics
researchProduct

Mutations in LCA5, encoding the ciliary protein lebercilin, cause Leber congenital amaurosis

2007

Contains fulltext : 53618.pdf (Publisher’s version ) (Closed access) Leber congenital amaurosis (LCA) causes blindness or severe visual impairment at or within a few months of birth. Here we show, using homozygosity mapping, that the LCA5 gene on chromosome 6q14, which encodes the previously unknown ciliary protein lebercilin, is associated with this disease. We detected homozygous nonsense and frameshift mutations in LCA5 in five families affected with LCA. In a sixth family, the LCA5 transcript was completely absent. LCA5 is expressed widely throughout development, although the phenotype in affected individuals is limited to the eye. Lebercilin localizes to the connecting cilia of photore…

MaleCandidate geneGenetics and epigenetic pathways of disease [NCMLS 6]genetic structuresMolecular Sequence DataOptic Atrophy Hereditary LeberNeuroinformatics [DCN 3]Biologymedicine.disease_causeCiliopathiesJoubert syndromeCell LineFrameshift mutationGenomic disorders and inherited multi-system disorders [IGMD 3]MiceTranslational research [ONCOL 3]Chlorocebus aethiopsPerception and Action [DCN 1]GeneticsmedicineNeurosensory disorders [UMCN 3.3]AnimalsHumansCiliaRats WistarEye ProteinsFrameshift MutationRenal disorder [IGMD 9]GeneticsMutationCiliumDisease gene identificationmedicine.diseasePhenotypeeye diseasesPedigreeRatsMice Inbred C57BLGenetic defects of metabolism [UMCN 5.1]Codon NonsenseCOS CellsFemalesense organsFunctional Neurogenomics [DCN 2]Microtubule-Associated ProteinsNature Genetics
researchProduct

Translational read-through of the RP2 Arg120stop mutation in patient iPSC-derived retinal pigment epithelium cells.

2014

Mutations in the RP2 gene lead to a severe form of X-linked retinitis pigmentosa. RP2 patients frequently present with nonsense mutations and no treatments are currently available to restore RP2 function. In this study, we reprogrammed fibroblasts from an RP2 patient carrying the nonsense mutation c.519C>T (p.R120X) into induced pluripotent stem cells (iPSC), and differentiated these cells into retinal pigment epithelial cells (RPE) to study the mechanisms of disease and test potential therapies. RP2 protein was undetectable in the RP2 R120X patient cells, suggesting a disease mechanism caused by complete lack of RP2 protein. The RP2 patient fibroblasts and iPSC-derived RPE cells showed phe…

MaleNonsense mutationInduced Pluripotent Stem CellsGene ExpressionRetinal Pigment EpitheliumBiologymedicine.disease_causeBioinformaticschemistry.chemical_compoundYoung AdultGTP-Binding ProteinsRetinitis pigmentosaGeneticsmedicineHumansCiliaFibroblastInduced pluripotent stem cellEye ProteinsMolecular BiologyGenetics (clinical)MutationOxadiazolesRetinal pigment epitheliumIntracellular Signaling Peptides and ProteinsMembrane ProteinsRetinalCell DifferentiationEpithelial CellsGeneral MedicineArticlesFibroblastsmedicine.diseaseCellular Reprogramming3. Good healthAtalurenCell biologyProtein Transportmedicine.anatomical_structurePhenotypechemistryProtein BiosynthesisMutationHuman molecular genetics
researchProduct

Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

2016

Seuls les 100 premiers auteurs dont les auteurs INRA ont été entrés dans la notice. La liste complète des auteurs et de leurs affiliations est accessible sur la publication.; International audience; In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues…

[SDV]Life Sciences [q-bio]autophagosomeReview Articleddc:616.07stressstreLC3MESH: AnimalsSettore MED/49 - Scienze Tecniche Dietetiche ApplicateSettore BIO/06 - Anatomia Comparata E Citologiachaperone-mediated autophagyComputingMilieux_MISCELLANEOUSSettore BIO/11Pharmacology. TherapySettore BIO/13standards [Biological Assay]autolysosomeMESH: Autophagy*/physiologylysosomemethods [Biological Assay]Biological AssaySettore BIO/17 - ISTOLOGIAErratumHumanBiochemistry & Molecular BiologySettore BIO/06physiology [Autophagy]Chaperonemediated autophagy[SDV.BC]Life Sciences [q-bio]/Cellular BiologyNOautophagy guidelines molecular biology ultrastructureautolysosome; autophagosome; chaperone-mediated autophagy; flux; LC3; lysosome; macroautophagy; phagophore; stress; vacuoleMESH: Biological Assay/methodsMESH: Computer Simulationddc:570Autolysosome Autophagosome Chaperonemediated autophagy Flux LC3 Lysosome Macroautophagy Phagophore Stress VacuoleAutophagyAnimalsHumansComputer SimulationSettore BIO/10ddc:612BiologyphagophoreMESH: HumansvacuoleAnimalLC3; autolysosome; autophagosome; chaperone-mediated autophagy; flux; lysosome; macroautophagy; phagophore; stress; vacuole; Animals; Biological Assay; Computer Simulation; Humans; Autophagy0601 Biochemistry And Cell BiologyfluxmacroautophagyMESH: Biological Assay/standards*Human medicineLC3; autolysosome; autophagosome; chaperone-mediated autophagy; flux; lysosome; macroautophagy; phagophore; stress; vacuole
researchProduct

Mutations in ARL2BP, Encoding ADP-Ribosylation-Factor-Like 2 Binding Protein, Cause Autosomal-Recessive Retinitis Pigmentosa

2013

Retinitis pigmentosa (RP) is a genetically heterogeneous retinal degeneration characterized by photoreceptor death, which results in visual failure. Here, we used a combination of homozygosity mapping and exome sequencing to identify mutations in ARL2BP, which encodes an effector protein of the small GTPases ARL2 and ARL3, as causative for autosomal-recessive RP (RP66). In a family affected by RP and situs inversus, a homozygous, splice-acceptor mutation, c.101−1G>C, which alters pre-mRNA splicing of ARLBP2 in blood RNA, was identified. In another family, a homozygous c.134T>G (p.Met45Arg) mutation was identified. In the mouse retina, ARL2BP localized to the basal body and cilium-associated…

AdultMaleRetinal degenerationCentrioleMolecular Sequence DataGenes RecessiveBiologymedicine.disease_causeMice03 medical and health sciences0302 clinical medicineBardet–Biedl syndromeGTP-Binding ProteinsReportRetinitis pigmentosaGeneticsmedicineAnimalsHumansBasal bodyGenetics(clinical)Photoreceptor CellsGenetics (clinical)030304 developmental biologyPrimary ciliary dyskinesiaGenetics0303 health sciencesMutationBase SequenceADP-Ribosylation FactorsCiliumHomozygoteMembrane Transport ProteinsEpithelial Cellsmedicine.diseasePedigreeCell biologyMutationFemalesense organsCarrier ProteinsRetinitis Pigmentosa030217 neurology & neurosurgeryProtein BindingTranscription FactorsThe American Journal of Human Genetics
researchProduct

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) 1

2021

Contains fulltext : 232759.pdf (Publisher’s version ) (Closed access) In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to…

0301 basic medicineProgrammed cell deathSettore BIO/06AutophagosomeAutolysosome[SDV]Life Sciences [q-bio]lnfectious Diseases and Global Health Radboud Institute for Molecular Life Sciences [Radboudumc 4]Autophagy-Related ProteinsReviewComputational biology[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologySettore MED/0403 medical and health sciencesstressChaperone-mediated autophagyddc:570AutophagyLC3AnimalsHumanscancerSettore BIO/10Autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSet (psychology)Molecular Biologyvacuole.phagophore030102 biochemistry & molecular biologyvacuolebusiness.industryInterpretation (philosophy)AutophagyAutophagosomesneurodegenerationCell BiologyfluxMulticellular organismmacroautophagy030104 developmental biologyKnowledge baselysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleBiological AssayLysosomesbusinessBiomarkers[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

Erratum

2016

Author(s): Klionsky, DJ; Abdelmohsen, K; Abe, A; Abedin, MJ; Abeliovich, H; Arozena, AA; Adachi, H; Adams, CM; Adams, PD; Adeli, K; Adhihetty, PJ; Adler, SG; Agam, G; Agarwal, R; Aghi, MK; Agnello, M; Agostinis, P; Aguilar, PV; Aguirre-Ghiso, J; Airoldi, EM; Ait-Si-Ali, S; Akematsu, T; Akporiaye, ET; Al-Rubeai, M; Albaiceta, GM; Albanese, C; Albani, D; Albert, ML; Aldudo, J; Algul, H; Alirezaei, M; Alloza, I; Almasan, A; Almonte-Beceril, M; Alnemri, ES; Alonso, C; Altan-Bonnet, N; Altieri, DC; Alvarez, S; Alvarez-Erviti, L; Alves, S; Amadoro, G; Amano, A; Amantini, C; Ambrosio, S; Amelio, I; Amer, AO; Amessou, M; Amon, A; An, Z; Anania, FA; Andersen, SU; Andley, UP; Andreadi, CK; Andrieu-Ab…

0301 basic medicineSettore BIO/06biologyCell Biology[SDV.BC]Life Sciences [q-bio]/Cellular Biologybiology.organism_classificationCell biologyInterpretation (model theory)03 medical and health sciencesArama030104 developmental biologyMolecular BiologyHumanitiesComputingMilieux_MISCELLANEOUS
researchProduct

Autophagy

2021

In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide…

macroautophagy;autophagyAutophagosome[SDV]Life Sciences [q-bio]canceLC3 macroautophagyautophagosomeneurodegeneration;[SDV.BC]Life Sciences [q-bio]/Cellular BiologyAutophagy AutophagosomeNOstress vacuolestressautophagic processesstrerfluxLC3cancerguidelinesAutophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/06 - Anatomia Comparata E Citologia[SDV.BC] Life Sciences [q-bio]/Cellular BiologyComputingMilieux_MISCELLANEOUSMedaka oryzias latipesphagophorevacuoleQHneurodegenerationAutophagosome cancer flux LC3 lysosome macroautophagy neurodegeneration phagophore stress vacuoleautophagy; autophagic processes; guidelines; autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuolefluxmacroautophagystress.lysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/17 - ISTOLOGIARC
researchProduct