0000000001214148

AUTHOR

Betty Yuen Kwan Law

showing 11 related works from this author

Ca2+ signalling plays a role in celastrol‐mediated suppression of synovial fibroblasts of rheumatoid arthritis patients and experimental arthritis in…

2019

Background and purpose Celastrol exhibits anti-arthritic effects in rheumatoid arthritis (RA), but the role of celastrol-mediated Ca2+ mobilization in treatment of RA remains undefined. Here, we describe a regulatory role for celastrol-induced Ca2+ signalling in synovial fibroblasts of RA patients and adjuvant-induced arthritis (AIA) in rats. Experimental approach We used computational docking, Ca2+ dynamics and functional assays to study the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase pump (SERCA). In rheumatoid arthritis synovial fibroblasts (RASFs)/rheumatoid arthritis fibroblast-like synoviocytes (RAFLS), mechanisms of Ca2+ -mediated autophagy were analysed by histological, immunohis…

0301 basic medicinemusculoskeletal diseasesMaleProgrammed cell deathSERCAArthritisSarcoplasmic Reticulum Calcium-Transporting ATPasesArthritis RheumatoidRats Sprague-Dawley03 medical and health scienceschemistry.chemical_compound0302 clinical medicineBAPTAmedicineAutophagyAnimalsHumansCalcium SignalingCells CulturedPharmacologyMice KnockoutGene knockdownbiologyChemistrySynovial MembraneCalpainFibroblastsmedicine.diseaseResearch PapersArthritis ExperimentalTriterpenesCalcineurin030104 developmental biologyGene Expression RegulationCelastrolbiology.proteinCancer researchPentacyclic Triterpenes030217 neurology & neurosurgeryResearch PaperBritish Journal of Pharmacology
researchProduct

SERCA and P-glycoprotein inhibition and ATP depletion are necessary for celastrol-induced autophagic cell death and collateral sensitivity in multidr…

2019

Multidrug resistance (MDR) represents an obstacle in anti-cancer therapy. MDR is caused by multiple mechanisms, involving ATP-binding cassette (ABC) transporters such as P-glycoprotein (P-gp), which reduces intracellular drug levels to sub-therapeutic concentrations. Therefore, sensitizing agents retaining effectiveness against apoptosis- or drug-resistant cancers are desired for the treatment of MDR cancers. The sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) pump is an emerging target to overcome MDR, because of its continuous expression and because the calcium transport function is crucial to the survival of tumor cells. Previous studies showed that SERCA inhibitors exhibit anti-c…

0301 basic medicineProgrammed cell deathSERCALung NeoplasmsCell SurvivalAntineoplastic AgentsAutophagy-Related Protein 7Sarcoplasmic Reticulum Calcium-Transporting ATPases03 medical and health scienceschemistry.chemical_compound0302 clinical medicineAdenosine TriphosphateCell Line TumorAutophagyAnimalsHumansATP Binding Cassette Transporter Subfamily B Member 1P-glycoproteinPharmacologybiologyDose-Response Relationship DrugChemistryAutophagyXenograft Model Antitumor AssaysDrug Resistance MultipleTriterpenesMultiple drug resistanceMice Inbred C57BL030104 developmental biologyCelastrolApoptosisDrug Resistance Neoplasm030220 oncology & carcinogenesisCancer cellbiology.proteinCancer researchHepatocytesPentacyclic TriterpenesPharmacological research
researchProduct

Pharmacogenomics of Scopoletin in Tumor Cells

2016

Drug resistance and the severe side effects of chemotherapy necessitate the development of novel anticancer drugs. Natural products are a valuable source for drug development. Scopoletin is a coumarin compound, which can be found in several Artemisia species and other plant genera. Microarray-based RNA expression profiling of the NCI cell line panel showed that cellular response of scopoletin did not correlate to the expression of ATP-binding cassette (ABC) transporters as classical drug resistance mechanisms (ABCB1, ABCB5, ABCC1, ABCG2). This was also true for the expression of the oncogene EGFR and the mutational status of the tumor suppressor gene, TP53. However, mutations in the RAS onc…

0301 basic medicinePharmaceutical ScienceATP-binding cassette transporterDrug resistancePharmacologycoumarinAnalytical Chemistrychemistry.chemical_compound0302 clinical medicineNeoplasmsDrug DiscoveryABC-transportermicroarraysNF-kappa BABCB5Drug Resistance MultipleGene Expression Regulation NeoplasticMolecular Docking SimulationDrug developmentChemistry (miscellaneous)030220 oncology & carcinogenesisherbal medicineMolecular MedicineSignal TransductionTumor suppressor geneProtein Array AnalysisBiologyArticlelcsh:QD241-44103 medical and health scienceslcsh:Organic chemistrymultidrug resistanceCell Line TumorScopoletinHumansPhysical and Theoretical ChemistryTranscription factorScopoletinOncogenePlant ExtractsOrganic ChemistryTranscription Factor RelAphytotherapy030104 developmental biologyArtemisiachemistryDrug Resistance NeoplasmPharmacogeneticsCancer researchABC-transporter; cluster analysis; coumarin; herbal medicine; microarrays; multidrug resistance; phytotherapyATP-Binding Cassette Transporterscluster analysisMolecules
researchProduct

N-Desmethyldauricine Induces Autophagic Cell Death in Apoptosis-Defective Cells via Ca2+ Mobilization

2017

Resistance of cancer cells to chemotherapy remains a significant problem in oncology. Mechanisms regulating programmed cell death, including apoptosis, autophagy or necrosis, in the treatment of cancers have been extensively investigated over the last few decades. Autophagy is now emerging as an important pathway in regulating cell death or survival in cancer therapy. Recent studies demonstrated variety of natural small-molecules could induce autophagic cell death in apoptosis-resistant cancer cells, therefore, discovery of novel autophagic enhancers from natural products could be a promising strategy for treatment of chemotherapy-resistant cancer. By computational virtual docking analysis,…

0301 basic medicinePharmacologyProgrammed cell deathautophagyKinaseDrug discoveryAutophagylcsh:RM1-950BiologyCell biology03 medical and health sciences030104 developmental biologylcsh:Therapeutics. PharmacologyApoptosisautophagic cell deathN-desmethyldauricineSERCACancer cellCytotoxic T cellPharmacology (medical)apoptosis-resistantProtein kinase AOriginal ResearchFrontiers in Pharmacology
researchProduct

Tetrandrine, an Activator of Autophagy, Induces Autophagic Cell Death via PKC-α Inhibition and mTOR-Dependent Mechanisms

2017

Emerging evidence suggests the therapeutic role of autophagic modulators in cancer therapy. This study aims to identify novel traditional Chinese medicinal herbs as potential anti-tumor agents through autophagic induction, which finally lead to autophagy mediated-cell death in apoptosis-resistant cancer cells. Using bioactivity-guided purification, we identified tetrandrine (Tet) from herbal plant, Radix stephaniae tetrandrae, as an inducer of autophagy. Across a number of cancer cell lines, we found that breast cancer cells treated with tetrandrine show an increase autophagic flux and formation of autophagosomes. In addition, tetrandrine induces cell death in a panel of apoptosis-resistant…

0301 basic medicinePharmacologyProgrammed cell deathautophagylcsh:RM1-950AutophagyCaspase 3BiologytetrandrineCaspase 7Cell biologyTetrandrine03 medical and health scienceschemistry.chemical_compoundlcsh:Therapeutics. Pharmacology030104 developmental biologychemistryCancer cellmTORPharmacology (medical)apoptosis-resistantPKC-αProtein kinase API3K/AKT/mTOR pathwayOriginal ResearchFrontiers in Pharmacology
researchProduct

Synthesis, computational docking and biological evaluation of celastrol derivatives as dual inhibitors of SERCA and P-glycoprotein in cancer therapy.

2021

Abstract A series of eleven celastrol derivatives was designed, synthesized, and evaluated for their in vitro cytotoxic activities against six human cancer cell lines (A549, HepG2, HepAD38, PC3, DLD-1 Bax-Bak WT and DKO) and three human normal cells (LO2, BEAS-2B, CCD19Lu). To our knowledge, six derivatives were the first example of dipeptide celastrol derivatives. Among them, compound 3 was the most promising derivative, as it exhibited a remarkable anti-proliferative activity and improved selectivity in liver cancer HepAD38 versus human normal hepatocytes, LO2. Compound 6 showed higher selectivity in liver cancer cells against human normal lung fibroblasts, CCD19Lu cell line. The Ca2+ mob…

SERCAAntineoplastic AgentsApoptosisPharmacologySarcoplasmic Reticulum Calcium-Transporting ATPaseschemistry.chemical_compoundStructure-Activity RelationshipCell Line TumorDrug DiscoverymedicineCytotoxic T cellHumansATP Binding Cassette Transporter Subfamily B Member 1P-glycoproteinCell ProliferationPharmacologyBinding SitesbiologyOrganic ChemistryCancerGeneral Medicinemedicine.diseaseMolecular Docking SimulationchemistryApoptosisDocking (molecular)CelastrolCell cultureDrug Resistance NeoplasmDrug Designbiology.proteinDrug Screening Assays AntitumorPentacyclic TriterpenesEuropean journal of medicinal chemistry
researchProduct

Mode of Action Analyses of Neferine, a Bisbenzylisoquinoline Alkaloid of Lotus (Nelumbo nucifera) against Multidrug-Resistant Tumor Cells

2017

Neferine, a bisbenzylisoquinoline alkaloid isolated from the green seed embryos of Lotus (Nelumbo nucifera Gaertn), has been previously shown to have various anti-cancer effects. In the present study, we evaluated the effect of neferine in terms of P-glycoprotein (P-gp) inhibition via in vitro cytotoxicity assays, R123 uptake assays in drug-resistant cancer cells, in silico molecular docking analysis on human P-gp and in silico absorption, distribution, metabolism, and excretion (ADME), quantitative structure activity relationships (QSAR) and toxicity analyses. Lipinski rule of five were mainly considered for the ADME evaluation and the preset descriptors including number of hydrogen bond d…

0301 basic medicineQuantitative structure–activity relationshipnatural productsIn silicohERGPharmacologyP-glycoproteinchemotherapy03 medical and health sciences0302 clinical medicinecancerPharmacology (medical)Mode of actionIC50P-glycoproteinADMEOriginal ResearchPharmacologydrug resistancebiologylcsh:RM1-950030104 developmental biologylcsh:Therapeutics. Pharmacology030220 oncology & carcinogenesisbiology.proteinLipinski's rule of fiveneferineFrontiers in Pharmacology
researchProduct

Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

2016

Seuls les 100 premiers auteurs dont les auteurs INRA ont été entrés dans la notice. La liste complète des auteurs et de leurs affiliations est accessible sur la publication.; International audience; In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues…

[SDV]Life Sciences [q-bio]autophagosomeReview Articleddc:616.07stressstreLC3MESH: AnimalsSettore MED/49 - Scienze Tecniche Dietetiche ApplicateSettore BIO/06 - Anatomia Comparata E Citologiachaperone-mediated autophagyComputingMilieux_MISCELLANEOUSSettore BIO/11Pharmacology. TherapySettore BIO/13standards [Biological Assay]autolysosomeMESH: Autophagy*/physiologylysosomemethods [Biological Assay]Biological AssaySettore BIO/17 - ISTOLOGIAErratumHumanBiochemistry & Molecular BiologySettore BIO/06physiology [Autophagy]Chaperonemediated autophagy[SDV.BC]Life Sciences [q-bio]/Cellular BiologyNOautophagy guidelines molecular biology ultrastructureautolysosome; autophagosome; chaperone-mediated autophagy; flux; LC3; lysosome; macroautophagy; phagophore; stress; vacuoleMESH: Biological Assay/methodsMESH: Computer Simulationddc:570Autolysosome Autophagosome Chaperonemediated autophagy Flux LC3 Lysosome Macroautophagy Phagophore Stress VacuoleAutophagyAnimalsHumansComputer SimulationSettore BIO/10ddc:612BiologyphagophoreMESH: HumansvacuoleAnimalLC3; autolysosome; autophagosome; chaperone-mediated autophagy; flux; lysosome; macroautophagy; phagophore; stress; vacuole; Animals; Biological Assay; Computer Simulation; Humans; Autophagy0601 Biochemistry And Cell BiologyfluxmacroautophagyMESH: Biological Assay/standards*Human medicineLC3; autolysosome; autophagosome; chaperone-mediated autophagy; flux; lysosome; macroautophagy; phagophore; stress; vacuole
researchProduct

Erratum

2016

Author(s): Klionsky, DJ; Abdelmohsen, K; Abe, A; Abedin, MJ; Abeliovich, H; Arozena, AA; Adachi, H; Adams, CM; Adams, PD; Adeli, K; Adhihetty, PJ; Adler, SG; Agam, G; Agarwal, R; Aghi, MK; Agnello, M; Agostinis, P; Aguilar, PV; Aguirre-Ghiso, J; Airoldi, EM; Ait-Si-Ali, S; Akematsu, T; Akporiaye, ET; Al-Rubeai, M; Albaiceta, GM; Albanese, C; Albani, D; Albert, ML; Aldudo, J; Algul, H; Alirezaei, M; Alloza, I; Almasan, A; Almonte-Beceril, M; Alnemri, ES; Alonso, C; Altan-Bonnet, N; Altieri, DC; Alvarez, S; Alvarez-Erviti, L; Alves, S; Amadoro, G; Amano, A; Amantini, C; Ambrosio, S; Amelio, I; Amer, AO; Amessou, M; Amon, A; An, Z; Anania, FA; Andersen, SU; Andley, UP; Andreadi, CK; Andrieu-Ab…

0301 basic medicineSettore BIO/06biologyCell Biology[SDV.BC]Life Sciences [q-bio]/Cellular Biologybiology.organism_classificationCell biologyInterpretation (model theory)03 medical and health sciencesArama030104 developmental biologyMolecular BiologyHumanitiesComputingMilieux_MISCELLANEOUS
researchProduct

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) 1

2021

Contains fulltext : 232759.pdf (Publisher’s version ) (Closed access) In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to…

0301 basic medicineProgrammed cell deathSettore BIO/06AutophagosomeAutolysosome[SDV]Life Sciences [q-bio]lnfectious Diseases and Global Health Radboud Institute for Molecular Life Sciences [Radboudumc 4]Autophagy-Related ProteinsReviewComputational biology[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologySettore MED/0403 medical and health sciencesstressChaperone-mediated autophagyddc:570AutophagyLC3AnimalsHumanscancerSettore BIO/10Autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSet (psychology)Molecular Biologyvacuole.phagophore030102 biochemistry & molecular biologyvacuolebusiness.industryInterpretation (philosophy)AutophagyAutophagosomesneurodegenerationCell BiologyfluxMulticellular organismmacroautophagy030104 developmental biologyKnowledge baselysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleBiological AssayLysosomesbusinessBiomarkers[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

Autophagy

2021

In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide…

macroautophagy;autophagyAutophagosome[SDV]Life Sciences [q-bio]canceLC3 macroautophagyautophagosomeneurodegeneration;[SDV.BC]Life Sciences [q-bio]/Cellular BiologyAutophagy AutophagosomeNOstress vacuolestressautophagic processesstrerfluxLC3cancerguidelinesAutophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/06 - Anatomia Comparata E Citologia[SDV.BC] Life Sciences [q-bio]/Cellular BiologyComputingMilieux_MISCELLANEOUSMedaka oryzias latipesphagophorevacuoleQHneurodegenerationAutophagosome cancer flux LC3 lysosome macroautophagy neurodegeneration phagophore stress vacuoleautophagy; autophagic processes; guidelines; autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuolefluxmacroautophagystress.lysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/17 - ISTOLOGIARC
researchProduct