0000000001215063

AUTHOR

Michael Sendtner

showing 8 related works from this author

Opposing Effects of CREBBP Mutations Govern the Phenotype of Rubinstein-Taybi Syndrome and Adult SHH Medulloblastoma

2018

Recurrent mutations in chromatin modifiers are specifically prevalent in adolescent or adult patients with Sonic hedgehog-associated medulloblastoma (SHH MB). Here, we report that mutations in the acetyltransferase CREBBP have opposing effects during the development of the cerebellum, the primary site of origin of SHH MB. Our data reveal that loss of Crebbp in cerebellar granule neuron progenitors (GNPs) during embryonic development of mice compromises GNP development, in part by downregulation of brain-derived neurotrophic factor (Bdnf). Interestingly, concomitant cerebellar hypoplasia was also observed in patients with Rubinstein-Taybi syndrome, a congenital disorder caused by germline mu…

0301 basic medicineCerebellumCrebbp protein mousemetabolism [Cerebellar Neoplasms]acetyltransferase; cerebellum; CREBBP; development; Rubinstein-Taybi syndrome; SHH medulloblastomagenetics [Hedgehog Proteins]MiceNeurotrophic factorsmetabolism [CREB-Binding Protein]Mice KnockoutNeuronsRubinstein-Taybi Syndromepathology [Rubinstein-Taybi Syndrome]CREBBPCREB-Binding ProteinPhenotypegenetics [CREB-Binding Protein]3. Good healthpathology [Cerebellar Neoplasms]acetyltransferasePhenotypemedicine.anatomical_structuregenetics [Rubinstein-Taybi Syndrome]Femalemetabolism [Hedgehog Proteins]Signal TransductionSHH medulloblastomaAdultcerebellumBiologyGeneral Biochemistry Genetics and Molecular BiologyCREBBP; Rubinstein-Taybi syndrome; SHH medulloblastoma; acetyltransferase; cerebellum; development.03 medical and health sciencesGermline mutationAcetyltransferasesmetabolism [Medulloblastoma]medicineAnimalsHumansgenetics [Cerebellar Neoplasms]Hedgehog Proteinsddc:610Cerebellar NeoplasmsdevelopmentMolecular BiologyMedulloblastomaRubinstein–Taybi syndromegenetics [Medulloblastoma]metabolism [Rubinstein-Taybi Syndrome]pathology [Medulloblastoma]Cell Biologymedicine.disease030104 developmental biologyMutationphysiology [CREB-Binding Protein]Cancer researchSHH protein humanCerebellar hypoplasia (non-human)metabolism [Acetyltransferases]CREBBP protein humanMedulloblastomaDevelopmental BiologyCongenital disorderDevelopmental Cell
researchProduct

Truncated TrkB receptor-induced outgrowth of dendritic filopodia involves the p75 neurotrophin receptor.

2004

The Trk family of receptor tyrosine kinases and the p75 receptor (p75NTR) mediate the effects of neurotrophins on neuronal survival, differentiation and synaptic plasticity. The neurotrophin BDNF and its cognate receptor tyrosine kinase, TrkB.FL, are highly expressed in neurons of the central nervous system. At later stages in postnatal development the truncated TrkB splice variants (TrkB.T1, TrkB.T2) become abundant. However, the signalling and function of these truncated receptors remained largely elusive.We show that overexpression of TrkB.T1 in hippocampal neurons induces the formation of dendritic filopodia, which are known precursors of synaptic spines. The induction of filopodia by T…

Time FactorsGreen Fluorescent ProteinsReceptors Nerve Growth FactorTropomyosin receptor kinase ATransfectionTropomyosin receptor kinase CHippocampusModels BiologicalPC12 CellsReceptor Nerve Growth FactorReceptor tyrosine kinaseLow-affinity nerve growth factor receptorAnimalsReceptor trkBNerve Growth FactorsPseudopodiaCloning MolecularNeuronsbiologyDose-Response Relationship Drugmusculoskeletal neural and ocular physiologyCell DifferentiationCell BiologyDendritesImmunohistochemistryDendritic filopodiaCell biologyProtein Structure TertiaryRatsnervous systemMicroscopy FluorescenceTrk receptorembryonic structuresNeurotrophin bindingCOS Cellsbiology.proteinsense organsNeurotrophinProtein BindingSignal TransductionJournal of cell science
researchProduct

The CB1 cannabinoid receptor mediates excitotoxicity-induced neural progenitor proliferation and neurogenesis.

2007

Endocannabinoids are lipid signaling mediators that exert an important neuromodulatory role and confer neuroprotection in several types of brain injury. Excitotoxicity and stroke can induce neural progenitor (NP) proliferation and differentiation as an attempt of neuroregeneration after damage. Here we investigated the mechanism of hippocampal progenitor cell engagement upon excitotoxicity induced by kainic acid administration and the putative involvement of the CB1 cannabinoid receptor in this process. Adult NPs express kainate receptors that mediate proliferation and neurosphere generation in vitro via CB1 cannabinoid receptors. Similarly, in vivo studies showed that excitotoxicity-induce…

medicine.medical_specialtyKainic acidCannabinoid receptorNeurotoxinsExcitotoxicityKainate receptorBiologymedicine.disease_causeBiochemistryNeuroprotectionHippocampuschemistry.chemical_compoundMiceReceptor Cannabinoid CB1Epidermal growth factorInternal medicinemedicineAnimalsMolecular BiologyCell ProliferationMice KnockoutNeuronsKainic AcidStem CellsNeurogenesisCell BiologyEndocannabinoid systemCell biologyNerve RegenerationEndocrinologynervous systemchemistrylipids (amino acids peptides and proteins)Fibroblast Growth Factor 2The Journal of biological chemistry
researchProduct

The CB1 cannabinoid receptor signals striatal neuroprotection via a PI3K/Akt/mTORC1/BDNF pathway

2015

The CB1 cannabinoid receptor, the main molecular target of endocannabinoids and cannabis active components, is the most abundant G protein-coupled receptor in the mammalian brain. In particular, the CB1 receptor is highly expressed in the basal ganglia, mostly on terminals of medium-sized spiny neurons, where it plays a key neuromodulatory function. The CB1 receptor also confers neuroprotection in various experimental models of striatal damage. However, the assessment of the physiological relevance and therapeutic potential of the CB1 receptor in basal ganglia-related diseases is hampered, at least in part, by the lack of knowledge of the precise mechanism of CB1 receptor neuroprotective ac…

Brain-derived neurotrophic factormedicine.medical_specialtyCannabinoid receptormusculoskeletal neural and ocular physiologymedicine.medical_treatmentCell BiologyBiologyEndocannabinoid systemδ-opioid receptorEndocrinologynervous systemInternal medicinemedicinelipids (amino acids peptides and proteins)CannabinoidSignal transductionReceptorMolecular BiologyProtein kinase BNeuroscienceCell Death & Differentiation
researchProduct

Loss of striatal type 1 cannabinoid receptors is a key pathogenic factor in Huntington's disease.

2010

Endocannabinoids act as neuromodulatory and neuroprotective cues by engaging type 1 cannabinoid receptors. These receptors are highly abundant in the basal ganglia and play a pivotal role in the control of motor behaviour. An early downregulation of type 1 cannabinoid receptors has been documented in the basal ganglia of patients with Huntington's disease and animal models. However, the pathophysiological impact of this loss of receptors in Huntington's disease is as yet unknown. Here, we generated a double-mutant mouse model that expresses human mutant huntingtin exon 1 in a type 1 cannabinoid receptor-null background, and found that receptor deletion aggravates the symptoms, neuropatholog…

MaleHuntingtinCannabinoid receptorCell Survivalmedicine.medical_treatmentBlotting WesternMice TransgenicBiologyMotor ActivityGrowth Hormone-Releasing HormoneMiceReceptor Cannabinoid CB1medicineCannabinoid receptor type 2AnimalsDronabinolReceptorBrain-derived neurotrophic factorNeuronsAnalysis of VarianceReverse Transcriptase Polymerase Chain ReactionEndocannabinoid systemMagnetic Resonance ImagingCorpus StriatumHuntington DiseaseRotarod Performance TestGPR18Neurology (clinical)CannabinoidNeuroscienceBrain : a journal of neurology
researchProduct

A two-stage genome-wide association study of sporadic amyotrophic lateral sclerosis

2009

The cause of sporadic amyotrophic lateral sclerosis (ALS) is largely unknown, but genetic factors are thought to play a significant role in determining susceptibility to motor neuron degeneration. To identify genetic variants altering risk of ALS, we undertook a two-stage genome-wide association study (GWAS): we followed our initial GWAS of 545 066 SNPs in 553 individuals with ALS and 2338 controls by testing the 7600 most associated SNPs from the first stage in three independent cohorts consisting of 2160 cases and 3008 controls. None of the SNPs selected for replication exceeded the Bonferroni threshold for significance. The two most significantly associated SNPs, rs2708909 and rs2708851 …

amyotrophic lateral sclerosisLinkage disequilibriumPopulationamyotrophic lateral sclerosis; genetics; GWASingle-nucleotide polymorphismGenome-wide association studyBiologyGWAPolymorphism Single Nucleotide03 medical and health sciences0302 clinical medicineGenotypeGeneticsmedicineHumansPolymorphismAmyotrophic lateral sclerosiseducationMolecular BiologyGenetics (clinical)030304 developmental biologyGenetics0303 health scienceseducation.field_of_studyGenomeSLA wide genome screeningGenome HumanAssociation Studies ArticlesCase-control studySingle NucleotideGeneral MedicineOdds ratiomedicine.diseaseSettore MED/26 - NEUROLOGIAAmyotrophic Lateral Sclerosis; genetics Case-Control Studies Genome; Human Genome-Wide Association Study Humans Polymorphism; Single NucleotideCase-Control Studies030217 neurology & neurosurgeryHumanGenome-Wide Association StudyHuman Molecular Genetics
researchProduct

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) 1

2021

Contains fulltext : 232759.pdf (Publisher’s version ) (Closed access) In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to…

0301 basic medicineProgrammed cell deathSettore BIO/06AutophagosomeAutolysosome[SDV]Life Sciences [q-bio]lnfectious Diseases and Global Health Radboud Institute for Molecular Life Sciences [Radboudumc 4]Autophagy-Related ProteinsReviewComputational biology[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologySettore MED/0403 medical and health sciencesstressChaperone-mediated autophagyddc:570AutophagyLC3AnimalsHumanscancerSettore BIO/10Autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSet (psychology)Molecular Biologyvacuole.phagophore030102 biochemistry & molecular biologyvacuolebusiness.industryInterpretation (philosophy)AutophagyAutophagosomesneurodegenerationCell BiologyfluxMulticellular organismmacroautophagy030104 developmental biologyKnowledge baselysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleBiological AssayLysosomesbusinessBiomarkers[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

Autophagy

2021

In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide…

macroautophagy;autophagyAutophagosome[SDV]Life Sciences [q-bio]canceLC3 macroautophagyautophagosomeneurodegeneration;[SDV.BC]Life Sciences [q-bio]/Cellular BiologyAutophagy AutophagosomeNOstress vacuolestressautophagic processesstrerfluxLC3cancerguidelinesAutophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/06 - Anatomia Comparata E Citologia[SDV.BC] Life Sciences [q-bio]/Cellular BiologyComputingMilieux_MISCELLANEOUSMedaka oryzias latipesphagophorevacuoleQHneurodegenerationAutophagosome cancer flux LC3 lysosome macroautophagy neurodegeneration phagophore stress vacuoleautophagy; autophagic processes; guidelines; autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuolefluxmacroautophagystress.lysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/17 - ISTOLOGIARC
researchProduct