0000000001215370

AUTHOR

Patrik Verstreken

showing 3 related works from this author

TBC1D24-TLDc-related epilepsy exercise-induced dystonia: rescue by antioxidants in a disease model

2019

Genetic mutations in TBC1D24 have been associated with multiple phenotypes, with epilepsy being the main clinical manifestation. The TBC1D24 protein consists of the unique association of a Tre2/Bub2/Cdc16 (TBC) domain and a TBC/lysin motif domain/catalytic (TLDc) domain. More than 50 missense and loss-of-function mutations have been described and are spread over the entire protein. Through whole genome/exome sequencing we identified compound heterozygous mutations, R360H and G501R, within the TLDc domain, in an index family with a Rolandic epilepsy exercise-induced dystonia phenotype (http://omim.org/entry/608105). A 20-year long clinical follow-up revealed that epilepsy was self-limited in…

MaleModels Molecular0301 basic medicineProtein ConformationAmino Acid Motifsalpha-TocopherolMutantCrystallography X-RayPHENOTYPECompound heterozygosityAntioxidantsAnimals Genetically ModifiedEpilepsy0302 clinical medicineCatalytic DomainDrosophila ProteinsMissense mutationoxidative stressChildTLDC DOMAINVITAMIN-EExome sequencingSequence DeletionNeuronsDystoniaGeneticsexercise-induced dystoniaTBC1D24GTPase-Activating ProteinsANNOTATIONSEpilepsy RolandicPhenotypeRecombinant ProteinsPedigree3. Good healthRolandic epilepsyDystoniaDrosophila melanogasterChild PreschoolFemaleSettore MED/26 - NeurologiaSynaptic VesiclesDrosophila melanogasterPROTEIN STABILITYLife Sciences & BiomedicineLocomotionAdolescentPhysical ExertionMutation MissenseClinical NeurologyPREDICTIONSBiology03 medical and health sciencesmedicineAnimalsHumansAmino Acid SequenceCOMPARTMENToxidative streScience & TechnologySequence Homology Amino AcidMUTATIONSNeurosciencesInfantBiological TransportDEGRADATIONmedicine.diseasebiology.organism_classificationAcetylcysteineDisease Models AnimalOxidative Stress030104 developmental biologyrab GTP-Binding ProteinsSEIZURESNeurosciences & NeurologyNeurology (clinical)Reactive Oxygen SpeciesSequence Alignment030217 neurology & neurosurgery
researchProduct

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) 1

2021

Contains fulltext : 232759.pdf (Publisher’s version ) (Closed access) In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to…

0301 basic medicineProgrammed cell deathSettore BIO/06AutophagosomeAutolysosome[SDV]Life Sciences [q-bio]lnfectious Diseases and Global Health Radboud Institute for Molecular Life Sciences [Radboudumc 4]Autophagy-Related ProteinsReviewComputational biology[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologySettore MED/0403 medical and health sciencesstressChaperone-mediated autophagyddc:570AutophagyLC3AnimalsHumanscancerSettore BIO/10Autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSet (psychology)Molecular Biologyvacuole.phagophore030102 biochemistry & molecular biologyvacuolebusiness.industryInterpretation (philosophy)AutophagyAutophagosomesneurodegenerationCell BiologyfluxMulticellular organismmacroautophagy030104 developmental biologyKnowledge baselysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleBiological AssayLysosomesbusinessBiomarkers[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

Autophagy

2021

In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide…

macroautophagy;autophagyAutophagosome[SDV]Life Sciences [q-bio]canceLC3 macroautophagyautophagosomeneurodegeneration;[SDV.BC]Life Sciences [q-bio]/Cellular BiologyAutophagy AutophagosomeNOstress vacuolestressautophagic processesstrerfluxLC3cancerguidelinesAutophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/06 - Anatomia Comparata E Citologia[SDV.BC] Life Sciences [q-bio]/Cellular BiologyComputingMilieux_MISCELLANEOUSMedaka oryzias latipesphagophorevacuoleQHneurodegenerationAutophagosome cancer flux LC3 lysosome macroautophagy neurodegeneration phagophore stress vacuoleautophagy; autophagic processes; guidelines; autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuolefluxmacroautophagystress.lysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/17 - ISTOLOGIARC
researchProduct