0000000001216236

AUTHOR

S. Adrián-martínez

showing 10 related works from this author

Search for Cosmic Neutrino Point Sources with Four Year Data of the ANTARES Telescope

2012

In this paper, a time-integrated search for point sources of cosmic neutrinos is presented using the data collected from 2007 to 2010 by the ANTARES neutrino telescope. No statistically significant signal has been found and upper limits on the neutrino flux have been obtained. Assuming an E ¿2 n; spectrum, these flux limits are at 1-10 ¿10¿8 GeV cm¿2 s¿1 for declinations ranging from ¿90° to 40°. Limits for specific models of RX J1713.7¿3946 and Vela X, which include information on the source morphology and spectrum, are also given.

cosmic neutrinosUNIVERSEFluxVela01 natural scienceslaw.inventionHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)lawSIGNALSABSORPTION[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]MAXIMUM-LIKELIHOOD010303 astronomy & astrophysicsATMOSPHERIC MUONSPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)COSMIC cancer database[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]ASTRONOMYneutrinosastroparticle physicsFísica nuclearNeutrinoAstrophysics - High Energy Astrophysical PhenomenaREMNANT RX J1713.7-3946Particle physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::High Energy Astrophysical PhenomenaNeutrino telescope[SDU.STU]Sciences of the Universe [physics]/Earth SciencesFOS: Physical sciencesddc:500.2Telescopeneutrinos; cosmic rays; astroparticle physicscosmic rays0103 physical sciencesPoint (geometry)ALGORITHMNeutrinosDETECTORCosmic raysUNDERWATER CHERENKOV NEUTRINO TELESCOPES010308 nuclear & particles physicsAstronomy and AstrophysicsHIGH-ENERGY PHOTONSSpace and Planetary ScienceFISICA APLICADAAstroparticle physics
researchProduct

Search for muon neutrinos from gamma-ray bursts with the ANTARES neutrino telescope using 2008 to 2011 data

2013

Aims. We search for muon neutrinos in coincidence with GRBs with the ANTARES neutrino detector using data from the end of 2007 to 2011. Methods. Expected neutrino fluxes were calculated for each burst individually. The most recent numerical calculations of the spectra using the NeuCosmA code were employed, which include Monte Carlo simulations of the full underlying photohadronic interaction processes. The discovery probability for a selection of 296 GRBs in the given period was optimised using an extended maximum-likelihood strategy. Results. No significant excess over background is found in the data, and 90% confidence level upper limits are placed on the total expected flux according to …

Astrophysics::High Energy Astrophysical PhenomenaNeutrino telescopeMonte Carlo methodgamma-ray burst: generalFOS: Physical sciencesddc:500.201 natural sciencesCoincidenceSpectral lineGamma ray burstsmethods: numericalNuclear physicsneutrinoHigh Energy Physics - Phenomenology (hep-ph)Raigs gamma0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]NeutrinsNeutrinos010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics:Desenvolupament humà i sostenible [Àrees temàtiques de la UPC]Muonnumerical [Methods]010308 nuclear & particles physicsneutrinosAstronomy and Astrophysicsgeneral [Gamma-ray burst]neutrinos - gamma-ray burst: general - methods: numerical; methods: numerical; neutrinos; gamma-ray burst: generalHigh Energy Physics - PhenomenologyGamma-ray burst: general; Methods: numerical; NeutrinosNeutrino detectorSpace and Planetary ScienceFISICA APLICADAFísica nuclearHigh Energy Physics::ExperimentNeutrinoneutrinos - gamma-ray burst: general - methods: numericalGamma-ray burstAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Measurement of atmospheric neutrino oscillations with the ANTARES neutrino telescope

2012

The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon neutrinos of such energies crossing the Earth. The parameters determining the oscillation of atmospheric neutrinos are extracted by fitting the event rate as a function of the ratio of the estimated neutrino energy and reconstructed flight path through the Earth. Measurement contours of the oscillation parameters in a two-flavour approximation are derived. Assuming maximal mixing, a mass …

Nuclear and High Energy PhysicsParticle physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Physics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesddc:500.2Neutrino telescope01 natural sciencesPartícules (Física nuclear)High Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Experiment0103 physical sciencesNeutrinsHigh Energy PhysicsNeutrinos010306 general physicsNeutrino oscillationPhysicsMuonANTARES:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsNeutrino oscillations[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]High Energy Physics::PhenomenologySolar neutrino problemNeutrino astrophysicsCosmic neutrino backgroundNeutrino detectorFISICA APLICADAMeasurements of neutrino speedFísica nuclearHigh Energy Physics::ExperimentNeutrino[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Physics Letters B
researchProduct

Acoustic transmitters for underwater neutrino telescopes.

2012

In this paper acoustic transmitters that were developed for use in underwater neutrino telescopes are presented. Firstly, an acoustic transceiver has been developed as part of the acoustic positioning system of neutrino telescopes. These infrastructures are not completely rigid and require a positioning system in order to monitor the position of the optical sensors which move due to sea currents. To guarantee a reliable and versatile system, the transceiver has the requirements of reduced cost, low power consumption, high pressure withstanding (up to 500 bars), high intensity for emission, low intrinsic noise, arbitrary signals for emission and the capacity of acquiring and processing recei…

Physics - Instrumentation and DetectorsPositioning systemparametric sourcesFOS: Physical sciencesUnderwater neutrino telescopesacoustic transceiver; sensor array; underwater neutrino telescopes; calibration; positioning systems; parametric sourcessensor arraylcsh:Chemical technology01 natural sciencesBiochemistrySignalArticleAnalytical ChemistryPositioning systemsSensor array0103 physical sciencesAcoustic transceiverElectronic engineeringlcsh:TP1-118514. Life underwaterElectrical and Electronic EngineeringInstrumentation and Methods for Astrophysics (astro-ph.IM)010301 acousticsInstrumentationSensor arrayPhysics010308 nuclear & particles physicsTransmitterParametric sourcespositioning systemsInstrumentation and Detectors (physics.ins-det)calibrationAtomic and Molecular Physics and OpticsNoiseacoustic transceiverNeutrino detectorFISICA APLICADACalibrationNeutrinoAstrophysics - Instrumentation and Methods for Astrophysicsunderwater neutrino telescopesUnderwater acoustic communicationSensors (Basel, Switzerland)
researchProduct

First search for neutrinos in correlation with gamma-ray bursts with the ANTARES neutrino telescope

2013

A search for neutrino-induced muons in correlation with a selection of 40 gamma-ray bursts that occurred in 2007 has been performed with the ANTARES neutrino telescope. During that period, the detector consisted of 5 detection lines. The ANTARES neutrino telescope is sensitive to TeV-PeV neutrinos that are predicted from gamma-ray bursts. No events were found in correlation with the prompt photon emission of the gamma-ray bursts and upper limits have been placed on the flux and fluence of neutrinos for different models.

AstrofísicaFLUX[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]neutrino experiments; neutrino astronomy; gamma ray bursts theoryPOINT SOURCESPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaREDSHIFTFluxFOS: Physical sciencesAstrophysics01 natural sciencesICECUBEneutrino astronomyneutrino experiments0103 physical sciencesgamma ray bursts theory010303 astronomy & astrophysicsNeutrino experimentsATMOSPHERIC MUONSPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)MuonGamma ray bursts theory010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]High Energy Physics::PhenomenologyAstrophysics::Instrumentation and Methods for AstrophysicsAstronomygamma ray bursts theory; neutrino astronomy; neutrino experimentsAstronomy and Astrophysicsgamma ray burstsCATALOGRedshiftNeutrino detectorNeutrino astronomyFISICA APLICADAneutrino experimentHigh Energy Physics::ExperimentNeutrino astronomyNeutrinoAstrophysics - High Energy Astrophysical PhenomenaGamma-ray burstSYSTEM
researchProduct

A search for time dependent neutrino emission from microquasars with the ANTARES telescope

2014

[EN] Results are presented on a search for neutrino emission from a sample of six microquasars, based on the data collected by the ANTARES neutrino telescope between 2007 and 2010. By means of appropriate time cuts, the neutrino search has been restricted to the periods when the acceleration of relativistic jets was taking place at the microquasars under study. The time cuts have been chosen using the information from the X-ray telescopes RXTE/ASM and Swift/BAT, and, in one case, the gamma-ray telescope Fermi/LAT. No statistically significant excess has been observed, thus upper limits on the neutrino fluences have been derived and compared to the predictions by models. Constraints have bee…

Nuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciences7. Clean energyLuminositylaw.inventionTelescopeneutrinoAstrophysical jetlawMicroquasars0103 physical sciencesmicroquasarNeutrinos010303 astronomy & astrophysicsAstroparticle physicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]AstronomyFísicaAstronomy and AstrophysicsSolar neutrino problemNeutrino detectorSpace and Planetary ScienceFISICA APLICADANuclear and High Energy Physics; Astronomy and Astrophysics; Space and Planetary ScienceHigh Energy Physics::ExperimentNeutrinoAstroparticle physicsAstrophysics - High Energy Astrophysical PhenomenaANTARES neutrino telescopeFermi Gamma-ray Space Telescope
researchProduct

Search for relativistic magnetic monopoles with the ANTARES neutrino telescope

2012

Magnetic monopoles are predicted in various unified gauge models and could be produced at intermediate mass scales. Their detection in a neutrino telescope is facilitated by the large amount of light emitted compared to that from muons. This paper reports on a search for upgoing relativistic magnetic monopoles with the ANTARES neutrino telescope using a data set of 116 days of live time taken from December 2007 to December 2008. The one observed event is consistent with the expected atmospheric neutrino and muon background, leading to a 90% C.L. upper limit on the monopole flux between 1.3 ¿ 10¿17 and 8.9 ¿ 10¿17 cm¿2 s¿1 sr¿1 for monopoles with velocity ß ¿ 0.625.

FLUXMuon backgroundParticle physicsGauge modelMagnetic monopolesAstrophysics::High Energy Astrophysical PhenomenaMagnetic monopoleneutrino telescopes; antares; magnetic monopoleFOS: Physical sciencesCosmic ray01 natural sciencesNuclear physics0103 physical sciencesNeutronFIELD010306 general physicsDETECTORCherenkov radiationZenithHigh Energy Astrophysical Phenomena (astro-ph.HE)NeutronsPhysicsSPECTRUMAtmospheric neutrinosMagnetic monopoleANTARES:Física::Acústica [Àrees temàtiques de la UPC]MuonCharged particles010308 nuclear & particles physicsAstronomy and AstrophysicsMonopols magnèticsUpper limitsNeutrino detectorMass scaleFISICA APLICADA[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Física nuclearData setsNeutrino telescopes[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - High Energy Astrophysical PhenomenaEvent (particle physics)TelescopesAstroparticle Physics
researchProduct

Deep sea tests of a prototype of the KM3NeT digital optical module: KM3NeT Collaboration

2014

The first prototype of a photo-detection unit of the future KM3NeT neutrino telescope has been deployed in the deep waters of the Mediterranean Sea. This digital optical module has a novel design with a very large photocathode area segmented by the use of 31 three inch photomultiplier tubes. It has been integrated in the ANTARES detector for in-situ testing and validation. This paper reports on the first months of data taking and rate measurements. The analysis results highlight the capabilities of the new module design in terms of background suppression and signal recognition. The directionality of the optical module enables the recognition of multiple Cherenkov photons from the same $^{40…

PhysicsPhotomultiplierPhotonPhysics and Astronomy (miscellaneous)010308 nuclear & particles physicsbusiness.industryPhysics::Instrumentation and DetectorsDetectorAstrophysics::Instrumentation and Methods for Astrophysics01 natural sciencesSignalPhotocathodeOpticsKM3NeT0103 physical sciences14. Life underwaterSensitivity (control systems)010306 general physicsbusinessEngineering (miscellaneous); Physics and Astronomy (miscellaneous)Engineering (miscellaneous)Cherenkov radiation
researchProduct

Constraining the neutrino emission of gravitationally lensed Flat-Spectrum Radio Quasars with ANTARES data

2014

This paper proposes to exploit gravitational lensing effects to improve the sensitivity of neutrino telescopes to the intrinsic neutrino emission of distant blazar populations. This strategy is illustrated with a search for cosmic neutrinos in the direction of four distant and gravitationally lensed Flat-Spectrum Radio Quasars. The magnification factor is estimated for each system assuming a singular isothermal profile for the lens. Based on data collected from 2007 to 2012 by the ANTARES neutrino telescope, the strongest constraint is obtained from the lensed quasar B0218+357, providing a limit on the total neutrino luminosity of this source of 1.08×10^46 erg s-1. This limit is about one o…

Point sourceAstronomyAstrophysics::High Energy Astrophysical Phenomenagravitational lensingFOS: Physical sciencesgravitational lensing; neutrino astronomyAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesLuminosityneutrino astronomyNeutrino0103 physical sciencesSensitivity (control systems)Blazar010303 astronomy & astrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)gravitational lensing; neutrino astronomy; Astronomy and AstrophysicsCOSMIC cancer database010308 nuclear & particles physicshigh energy astrophysical neutrinosAstrophysics::Instrumentation and Methods for AstrophysicsFísicaQuasarAstronomy and AstrophysicsGravitational lensFISICA APLICADANeutrinoMATEMATICA APLICADAAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Measurement of the atmospheric ?µ energy spectrum from 100 GeV to 200 TeV with the ANTARES telescope

2013

Atmospheric neutrinos are produced during cascades initiated by the interaction of primary cosmic rays with air nuclei. In this paper, a measurement of the atmospheric energy spectrum in the energy range 0.1-200 TeV is presented, using data collected by the ANTARES underwater neutrino telescope from 2008 to 2011. Overall, the measured flux is similar to 25 % higher than predicted by the conventional neutrino flux, and compatible with the measurements reported in ice. The flux is compatible with a single power-law dependence with spectral index gamma (meas)=3.58 +/- 0.12. With the present statistics the contribution of prompt neutrinos cannot be established.

Astrofísica:Desenvolupament humà i sostenible::Medi ambient [Àrees temàtiques de la UPC]Physics and Astronomy (miscellaneous)Raigs còsmicsFluxOceanografia7. Clean energy01 natural scienceslaw.inventionlawUnderwater acousticsEnergy range 0.1 to 200 TeVNeutrino TelescopePhysicsRange (particle radiation)Spectral index[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]atmospheric neutrinoNeutrinoAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsLorentz Invariance ViolationFLUX[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]OscillationsSoroll -- Aspectes ambientalsAstrophysics::High Energy Astrophysical PhenomenaCosmic rayddc:500.2MACRONuclear physicsTelescopeMUONSSEARCH0103 physical sciencesNeutrinsNeutrinos010306 general physicsEngineering (miscellaneous)Cosmic raysDETECTOR:Física::Acústica [Àrees temàtiques de la UPC]ANTARESAtmospheric neutrino antineutrino010308 nuclear & particles physicsAntares telescopeHigh Energy Physics::Phenomenology[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]13. Climate actionFISICA APLICADAlorentz invariance violation; neutrino oscillation; muonsHigh Energy Physics::ExperimentEnergy (signal processing)Bar (unit)European Physical Journal C
researchProduct