0000000001218147
AUTHOR
M. Wiedeking
Novel Techniques for Constraining Neutron-capture Rates relevant to Heavy-element Nucleosynthesis
In this contribution we discuss new experimental approaches to indirectly provide information on neutron-capture rates relevant to the $r$-process. In particular, we focus on applications of the Oslo method to extract fundamental nuclear properties for reaction-rate calculations: the nuclear level density and the $\gamma$ strength function. Two methods are discussed in detail, the Oslo method in inverse kinematics and the beta-Oslo method. These methods present a first step towards constraining neutron-capture rates of importance to the $r$-process.
β and γ bands in N = 88, 90, and 92 isotones investigated with a five-dimensional collective Hamiltonian based on covariant density functional theory : Vibrations, shape coexistence, and superdeformation
A comprehensive systematic study is made for the collective β and γ bands in even-even isotopes with neutron numbers N=88 to 92 and proton numbers Z=62(Sm) to 70 (Yb). Data, including excitation energies, B(E0) and B(E2) values, and branching ratios from previously published experiments are collated with new data presented for the first time in this study. The experimental data are compared to calculations using a five-dimensional collective Hamiltonian (5DCH) based on the covariant density functional theory (CDFT). A realistic potential in the quadrupole shape parameters V(β,γ) is determined from potential energy surfaces (PES) calculated using the CDFT. The parameters of the 5DCH are fixe…