Stress-Strain State in the Zone of Load Transfer in a Composite Specimen under Uniaxial Tension
The stress-strain state in the zone of load transfer in a uniaxially stretched specimen made of a unidirectional epoxy carbon-fiber-reinforced plastic (CFRP) is investigated. A parametric analysis of the influence of geometric and mechanical characteristics of the specimen on its stress-strain state is performed by means of finite-element modeling. The parameters allowing us to significantly reduce the dangerous concentration of transverse and tangential stresses are revealed. The mechanical tensile characteristics of a high-strength pultruded unidirectional CFRP are determined experimentally, and the size effect of its strength is estimated.