0000000001220259

AUTHOR

Joel E. Moore

showing 1 related works from this author

Emergent hydrodynamics in a strongly interacting dipolar spin ensemble.

2021

Conventional wisdom holds that macroscopic classical phenomena naturally emerge from microscopic quantum laws. However, despite this mantra, building direct connections between these two descriptions has remained an enduring scientific challenge. In particular, it is difficult to quantitatively predict the emergent "classical" properties of a system (e.g. diffusivity, viscosity, compressibility) from a generic microscopic quantum Hamiltonian. Here, we introduce a hybrid solid-state spin platform, where the underlying disordered, dipolar quantum Hamiltonian gives rise to the emergence of unconventional spin diffusion at nanometer length scales. In particular, the combination of positional di…

PhysicsQuantum PhysicsMultidisciplinaryRandom fieldCondensed Matter - Mesoscale and Nanoscale PhysicsQuantum simulatorFOS: Physical sciencesDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural NetworksFick's laws of diffusionDipolesymbols.namesakeClassical mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Spin diffusionsymbolsddc:500Spin (physics)Hamiltonian (quantum mechanics)Quantum Physics (quant-ph)QuantumNature
researchProduct