0000000001227475
AUTHOR
F Salemi
Search for High-energy Neutrinos from Gravitational Wave Event GW151226 and Candidate LVT151012 with ANTARES and IceCube
[EN] The Advanced LIGO observatories detected gravitational waves from two binary black hole mergers during their first observation run (O1). We present a high-energy neutrino follow-up search for the second gravitational wave event, GW151226, as well as for gravitational wave candidate LVT151012. We find two and four neutrino candidates detected by IceCube, and one and zero detected by ANTARES, within +/- 500 s around the respective gravitational wave signals, consistent with the expected background rate. None of these neutrino candidates are found to be directionally coincident with GW151226 or LVT151012. We use nondetection to constrain isotropic-equivalent high-energy neutrino emission …
Properties of the Binary Neutron Star Merger GW170817
On August 17, 2017, the Advanced LIGO and Advanced Virgo gravitational-wave detectors observed a low-mass compact binary inspiral. The initial sky localization of the source of the gravitational-wave signal, GW170817, allowed electromagnetic observatories to identify NGC 4993 as the host galaxy. In this work, we improve initial estimates of the binary's properties, including component masses, spins, and tidal parameters, using the known source location, improved modeling, and recalibrated Virgo data. We extend the range of gravitational-wave frequencies considered down to 23 Hz, compared to 30 Hz in the initial analysis. We also compare results inferred using several signal models, which ar…
Search for eccentric binary black hole mergers with advanced LIGO and advanced Virgo during their first and second observing runs
When formed through dynamical interactions, stellar-mass binary black holes may retain eccentric orbits ($e>0.1$ at 10 Hz) detectable by ground-based gravitational-wave detectors. Eccentricity can therefore be used to differentiate dynamically-formed binaries from isolated binary black hole mergers. Current template-based gravitational-wave searches do not use waveform models associated to eccentric orbits, rendering the search less efficient to eccentric binary systems. Here we present results of a search for binary black hole mergers that inspiral in eccentric orbits using data from the first and second observing runs (O1 and O2) of Advanced LIGO and Advanced Virgo. The search uses min…
Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A
On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anticoincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is $5.0\times 10^{-8}$. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short gamma-ray bursts. We use the ob…
GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs
We present the results from three gravitational-wave searches for coalescing compact binaries with component masses above 1$\mathrm{M}_\odot$ during the first and second observing runs of the Advanced gravitational-wave detector network. During the first observing run (O1), from September $12^\mathrm{th}$, 2015 to January $19^\mathrm{th}$, 2016, gravitational waves from three binary black hole mergers were detected. The second observing run (O2), which ran from November $30^\mathrm{th}$, 2016 to August $25^\mathrm{th}$, 2017, saw the first detection of gravitational waves from a binary neutron star inspiral, in addition to the observation of gravitational waves from a total of seven binary …