0000000001229398

AUTHOR

Johann Bouclé

0000-0002-7851-1842

showing 2 related works from this author

Influence of Nitrogen Doping on Device Operation for TiO 2 -Based Solid-State Dye-Sensitized Solar Cells: Photo-Physics from Materials to Devices

2016

International audience; Solid-state dye-sensitized solar cells (ssDSSC) constitute a major approach to photovoltaic energy conversion with efficiencies over 8% reported thanks to the rational design of efficient porous metal oxide electrodes, organic chromophores, and hole transporters. Among the various strategies used to push the performance ahead, doping of the nanocrystalline titanium dioxide (TiO 2) electrode is regularly proposed to extend the photo-activity of the materials into the visible range. However, although various beneficial effects for device performance have been observed in the literature, they remain strongly dependent on the method used for the production of the metal o…

Materials scienceGeneral Chemical EngineeringKineticsta221Oxide02 engineering and technology010402 general chemistry01 natural sciences7. Clean energylcsh:Chemistrychemistry.chemical_compoundX-ray photoelectron spectroscopyphoto-responseTiO2General Materials Sciencespiro-OMeTADDopantta114business.industryDopingsolid-state dye-sensitized solar cells; TiO<sub>2</sub>; nitrogen doping; photo-physics; photo-response; spiro-OMeTADnitrogen doping[CHIM.MATE]Chemical Sciences/Material chemistrysolid-state dye-sensitized solar cells021001 nanoscience & nanotechnology0104 chemical sciencesDye-sensitized solar celllcsh:QD1-999chemistrySpiro-OMeTADElectrodeOptoelectronicsCharge carrier0210 nano-technologybusinessphoto-physicsTiO 2
researchProduct

Multifunctional derivatives of dimethoxy-substituted triphenylamine containing different acceptor moieties

2020

This project has received funding from the Research Council of Lithuania (LMTLT), Agreement No. [S-LZ-19-2]. This research was funded by the Région Centre, the Tunisian ministry of research, University of Monastir and the French ministry of Higher Education and Research. J. Bouclé would like to thank the Sigma-Lim LabEx environment for financial supports, and the PLATINOM facility at XLIM laboratory regarding device fabrication and characterizations. DG acknowledges the Lithuanian Academy of Sciences for the financial support.

Materials scienceKerr effectGeneral Chemical EngineeringGeneral Physics and AstronomyTwo photon absorption effect02 engineering and technology010402 general chemistryPhotochemistryTriphenylamine7. Clean energy01 natural sciencesTwo-photon absorptionRhodanine-3-acetic acidAcetic acidchemistry.chemical_compoundCyanoacrylic acidDimethoxy-substituted triphenylamineKerr effect:NATURAL SCIENCES:Physics [Research Subject Categories]General Materials Science[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsComputingMilieux_MISCELLANEOUSGeneral Environmental Science[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Energy conversion efficiencyGeneral Engineering021001 nanoscience & nanotechnologyAcceptor3. Good health0104 chemical sciencesDye-sensitized solar cellchemistry[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]General Earth and Planetary SciencesDye-sensitized solar cell0210 nano-technologyGlass transition
researchProduct