0000000001231000

AUTHOR

C. Henrich

Enhanced Quadrupole and Octupole Strength in Doubly Magic ^{132}Sn.

International audience; The first $2^+$ and $3^-$ states of the doubly magic nucleus $^{132}$Sn are populated via safe Coulomb excitation employing the recently commissioned HIE-ISOLDE accelerator at CERN in conjunction with the highly efficient MINIBALL array. The $^{132}$Sn ions are accelerated to an energy of 5.49  MeV/nucleon and impinged on a $^{206}$Pb target. Deexciting $\gamma$ rays from the low-lying excited states of the target and the projectile are recorded in coincidence with scattered particles. The reduced transition strengths are determined for the transitions $0_{g.s.}^+ \rightarrow 2_1^+$, $0_{g.s.}^+ \rightarrow 3_1^-$, and $2_1^+ \rightarrow 3_1^-$ in $^{132}$Sn. The res…

research product

High-Statistics Sub-Barrier Coulomb Excitation of $^{106,108,110}$Sn

International audience; A Coulomb excitation campaign on $^{106,108,110}$Sn at 4.4–4.5 MeV/u was launched at the HIE-ISOLDE facility at CERN. Larger excitation cross sections and γ-ray statistics were achieved compared to previous experiments at ∼2.8 MeV/u. More precise $(B(E2;0_{1}^{ + } \to 2_{1}^{ + }))$ values, lifetimes of states via the Doppler shift attenuation method, and new $(B(E2;0_{1}^{ + } \to 2_{x}^{ + })), (B(E2;2_{1}^{ + } \to 4_{1}^{ + }))$ and $(Q(2_{1}^{ + }))$ values from the new Miniball data will be obtained and applied to test modern nuclear structure theories.

research product

Lifetime measurements of excited states in ¹⁶³W and the implications for the anomalous B(E2) ratios in transitional nuclei

This letter reports lifetime measurements of excited states in the odd-N nucleus $^{163}$W using the recoil-distance Doppler shift method to probe the core polarising effect of the i13/2 neutron orbital on the underlying soft triaxial even-even core. The ratio B(E2:21/2+→17/2+)/B(E2:17/2+→13/2+) is consistent with the predictions of the collective rotational model. The deduced B(E2) values provide insights into the validity of collective model predictions for heavy transitional nuclei and a geometric origin for the anomalous B(E2) ratios observed in nearby even-even nuclei is proposed.

research product

Lifetime measurements in Ti52,54 to study shell evolution toward N=32

Lifetimes of the excited states in the neutron-rich Ti-52,Ti-54 nuclei, produced in a multinucleon-transfer reaction, were measured by employing the Cologne plunger device and the recoil-distance D ...

research product

Coulomb excitation of Rn-222

The nature of quadrupole and octupole collectivity in 222Rn was investigated by determining the electric-quadrupole (E2) and octupole (E3) matrix elements using subbarrier, multistep Coulomb excitation. The radioactive 222Rn beam, accelerated to 4.23 MeV/u, was provided by the HIE-ISOLDE facility at CERN. Data were collected in the Miniball γ-ray spectrometer following the bombardment of two targets, 120Sn and 60Ni. Transition E2 matrix elements within the ground-state and octupole bands were measured up to 10ℏ and the results were consistent with a constant intrinsic electric-quadrupole moment, 518(11)efm2. The values of the intrinsic electric-octupole moment for the 0+→3− and 2+→5− transi…

research product

First ß-decay spectroscopy of 135In and new ß-decay branches of 134In

research product

Coulomb Excitation of (142) Xe

5 pags., 2 figs. -- Open Access funded by Creative Commons Atribution Licence 4.0. -- Presented at the XXXV Mazurian Lakes Conference on Physics, Piaski, Poland, September 3–9, 2017.

research product

First β-decay spectroscopy of $^{135}$In and new $β$-decay branches of $^{134}$In

International audience; The $\beta$ decay of the neutron-rich $^{134}$In and $^{135}$In was investigated experimentally in order to provide new insights into the nuclear structure of the tin isotopes with magic proton number $Z=50$ above the $N=82$ shell. The $\beta$-delayed $\gamma$-ray spectroscopy measurement was performed at the ISOLDE facility at CERN, where indium isotopes were selectively laser-ionized and on-line mass separated. Three $\beta$-decay branches of $^{134}$In were established, two of which were observed for the first time. Population of neutron-unbound states decaying via $\gamma$ rays was identified in the two daughter nuclei of $^{134}$In, $^{134}$Sn and $^{133}$Sn, at…

research product

First β -decay spectroscopy of In 135 and new β -decay branches of In 134

research product

Lifetime measurements of excited states in $^{163}$W and the implications for the anomalous B(E2) ratios in transitional nuclei

Grahn, Tuomas/0000-0002-6255-2279; Herzan, Andrej/0000-0002-6736-7638; Cullen, Dave/0000-0002-0041-1606; Barber, Liam/0000-0002-7409-9352; Keatings, James Michael/0000-0003-4271-8021; SAYGI, BAHADIR/0000-0001-5406-506X; Greenlees, Paul/0000-0002-5986-5274; Spagnoletti, Pietro/0000-0002-7674-989X; Parr, Edward/0000-0001-6204-4461; Bondili, S Nara Singh/0000-0002-4096-2429

research product

Enhanced Quadrupole and Octupole Strength in Doubly Magic Sn132

The first 2+ and 3- states of the doubly magic nucleus Sn132 are populated via safe Coulomb excitation employing the recently commissioned HIE-ISOLDE accelerator at CERN in conjunction with the highly efficient MINIBALL array. The Sn132 ions are accelerated to an energy of 5.49 MeV/nucleon and impinged on a Pb206 target. Deexciting γ rays from the low-lying excited states of the target and the projectile are recorded in coincidence with scattered particles. The reduced transition strengths are determined for the transitions 0g.s.+→21+, 0g.s.+→31-, and 21+→31- in Sn132. The results on these states provide crucial information on cross-shell configurations which are determined within large-sca…

research product

Detailed spectroscopy of doubly magic $^{132}$Sn

The structure of the doubly magic $^{132}_{50}$Sn$_{82}$ has been investigated at the ISOLDE facility at CERN, populated both by the $\beta^-$decay of $^{132}$In and $\beta^-$-delayed neutron emission of $^{133}$In. The level scheme of $^{132}$Sn is greatly expanded with the addition of 68 $\gamma$-transitions and 17 levels observed for the first time in the $\beta$ decay. The information on the excited structure is completed by new $\gamma$-transitions and states populated in the $\beta$-n decay of $^{133}$In. Improved delayed neutron emission probabilities are obtained both for $^{132}$In and $^{133}$In. Level lifetimes are measured via the Advanced Time-Delayed $\beta\gamma\gamma$(t) fas…

research product

Evolution of Octupole Deformation in Radium Nuclei from Coulomb Excitation of Radioactive Ra222 and Ra228 Beams

There is sparse direct experimental evidence that atomic nuclei can exhibit stable "pear" shapes arising from strong octupole correlations. In order to investigate the nature of octupole collectivity in radium isotopes, electric octupole (E3) matrix elements have been determined for transitions in ^{222,228}Ra nuclei using the method of sub-barrier, multistep Coulomb excitation. Beams of the radioactive radium isotopes were provided by the HIE-ISOLDE facility at CERN. The observed pattern of E3 matrix elements for different nuclear transitions is explained by describing ^{222}Ra as pear shaped with stable octupole deformation, while ^{228}Ra behaves like an octupole vibrator.

research product

β decay of In133 : γ emission from neutron-unbound states in Sn133

Excited states in Sn-133 were investigated through the beta decay of In-133 at the ISOLDE facility. The ISOLDE Resonance Ionization Laser Ion Source (RILIS) provided isomer-selective ionization for In-133, allowing us to study separately, and in detail, the beta-decay branch of In-133 J(pi)= (9/2(+)) ground state and its J(pi) = (1/2(-)) isomer.Thanks to the large spin difference of the two beta-decaying states of In-133, it is possible to investigate separately the lower and higher spin states in the daughter, Sn-133, and thus to probe independently different single-particle and single-hole levels. We report here new gamma transitions observed in the decay of In-133, including those assign…

research product

First -decay spectroscopy of and new -decay branches of

19 pags., 14 figs., 3 tabs.

research product

Coulomb excitation of 222Rn

International audience; The nature of quadrupole and octupole collectivity in $^{222}$Rn was investigated by determining the electric-quadrupole (E2) and octupole (E3) matrix elements using subbarrier, multistep Coulomb excitation. The radioactive $^{222}$Rn beam, accelerated to 4.23 MeV/u, was provided by the HIE-ISOLDE facility at CERN. Data were collected in the Miniball $\gamma$ -ray spectrometer following the bombardment of two targets, $^{120}$Sn and $^{60}$Ni. Transition E2 matrix elements within the ground-state and octupole bands were measured up to 10 ¯h and the results were consistent with a constant intrinsic electric-quadrupole moment, 518(11) $e$ fm$^2$ . The values of the int…

research product

The observation of vibrating pear-shapes in radon nuclei

6 pags., 4 fig.s, 1 tab. -- Open Access funded by Creative Commons Atribution Licence 4.0

research product

Coulomb excitation of pear-shaped nuclei

There is a large body of evidence that atomic nuclei can undergo octupole distortion and assume the shape of a pear. This phenomenon is important for measurements of electric-dipole moments of atoms, which would indicate CP violation and hence probe physics beyond the Standard Model of particle physics. Isotopes of both radon and radium have been identified as candidates for such measurements. Here, we have observed the low-lying quantum states in 224Rn and 226Rn by accelerating beams of these radioactive nuclei. We show that radon isotopes undergo octupole vibrations but do not possess static pear-shapes in their ground states. We conclude that radon atoms provide less favourable condition…

research product