0000000001231473

AUTHOR

Laura Tomsche

showing 4 related works from this author

Process-based microphysical characterization of a strong mid-latitude convective system using aircraft in situ cloud measurements

2022

Clouds in the mixed-phase temperature regime impose a large uncertainty onto climate prediction models, in part due to incomplete knowledge of the degree of glaciation affecting cloud radiative properties. To achieve a better representation of these clouds, it is crucial to improve the understanding of ice nucleation and growth as well as microphysical properties determining the cloud phase. In this case study, we provide a rare data set of aircraft in situ measurements in a strong mid-latitude convective system extending from the boundary layer to the tropopause and aim to extend the sparse database of such measurements. Data were obtained with the research aircraft HALO and cloud properti…

Astrophysics::Galaxy AstrophysicsPhysics::Atmospheric and Oceanic PhysicsPhysics::Geophysics
researchProduct

Measurement report: Emission factors of NH3 and NHx for wildfires and agricultural fires in the United States

2023

During the 2019 Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) study, the NASA DC-8 carried out in situ chemical measurements in smoke plumes emitted from wildfires and agricultural fires in the contiguous United States. The DC-8 payload included a modified proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) for the fast measurement of gaseous ammonia (NH3) and a high-resolution time-of-flight aerosol mass spectrometer (AMS) for the fast measurement of submicron particulate ammonium (NH4+). We herein report data collected in smoke plumes emitted from 6 wildfires in the Western United States, 2 prescribed grassland fires in the Central United …

agricultural fireAtmospheric Scienceemission factors NH3NH4+wildfireAtmospheric Chemistry and Physics
researchProduct

Measurement report: Photochemical production and loss rates of formaldehyde and ozone across Europe

2021

Various atmospheric sources and sinks regulate the abundance of tropospheric formaldehyde (HCHO), which is an important trace gas impacting the HOx (≡ HO2 + OH) budget and the concentration of ozone (O3). In this study, we present the formation and destruction terms of ambient HCHO and O3 calculated from in situ observations of various atmospheric trace gases measured at three different sites across Europe during summertime. These include a coastal site in Cyprus, in the scope of the Cyprus Photochemistry Experiment (CYPHEX) in 2014, a mountain site in southern Germany, as part of the Hohenpeißenberg Photochemistry Experiment (HOPE) in 2012, and a forested site in Finland, where measurement…

Atmospheric ScienceOzonePhysicsQC1-999PhotodissociationFormaldehydePhotochemistryMethaneTrace gasTropospherechemistry.chemical_compoundChemistrychemistryEnvironmental scienceQD1-999IsopreneNOx
researchProduct

Enhanced sulfur in the upper troposphere and lower stratosphere in spring 2020

2022

Sulfur compounds in the upper troposphere and lower stratosphere (UTLS) impact the atmosphere radiation budget, either directly as particles or indirectly as precursor gas for new particle formation. In situ measurements in the UTLS are rare but are important to better understand the impact of the sulfur budget on climate. The BLUESKY mission in May and June 2020 explored an unprecedented situation. (1) The UTLS experienced extraordinary dry conditions in spring 2020 over Europe, in comparison to previous years, and (2) the first lockdown of the COVID-19 pandemic caused major emission reductions from industry, ground, and airborne transportation. With the two research aircraft HALO and Falc…

624 Civil engineeringEarth sciences540 Chemistry and allied sciences550 Earth sciences540 Chemie624 Ingenieurbau und Umwelttechnikddc:550660 Technische Chemie550 Geowissenschaften660 Chemical engineering
researchProduct