Insights into the crystal packing of phosphorylporphyrins based on the topology of their intermolecular interaction energies
Four metal complexes of 5,15-bis(diethoxyphosphoryl)-10,20-diphenylporphyrin 1M (M = Cd(II), Ni(II), Pd(II), and Pt(II)) were synthesized and crystallographically characterized. The crystal organization patterns were analyzed using DFT (B97-D3/def2-SVP) calculations of the intermolecular interaction energies between complexes in the crystals. For the systematic analysis of crystal packing, the calculations were extended to previously reported compounds 1M (M = H2, Cu(II), and Zn(II)). Quantitative analysis of the interaction energies shows the essential role of weak intermolecular interactions, such as C-H⋯O, C-H⋯π and M⋯π, in the formation of basic structural motifs and their organization …
Structural and Electrochemical Studies of Copper(I) Complexes with Diethoxyphosphoryl-1,10-phenanthrolines
Two series of copper(I) complexes with diethoxyphosphoryl-substituted 1,10-phenanthroline ligands were synthesized and characterized in the solid state and in solution. The first comprised mixed-ligand CuI complexes with phenanthroline and triphenylphosphine. The second series includes bis-chelates with two phenanthroline ligands. According to the X-ray data for the six complexes, the ditopic phenanthroline ligands exhibit bidentate coordination to the copper(I) atom through two nitrogen atoms in both series. Solution equilibria involving different phenanthroline copper(I) species were studied by 1H and 31P NMR spectroscopy, electrochemistry, and spectroelectrochemistry. The solution specia…
Palladium-Catalyzed Synthesis of Mono- and Diphosphorylated 1,10-Phenanthrolines
A general protocol for the coupling of mono- and dihalo-1,10-phenanthrolines with diethyl phosphite is reported. This reaction proceeds smoothly in the presence of a Pd(OAc)2/dppf catalytic system and triethylamine as a base.
Facile Synthesis and Self‐Assembly of Zinc (2‐Diethoxyphosphorylethynyl)porphyrins
CCDC 990046: Experimental Crystal Structure Determination
Related Article: Alexander Mitrofanov, Machima Manowong, Yoann Rousselin, Stéphane Brandès, Roger Guilard, Alla Bessmertnykh-Lemeune, Ping Chen, Karl M. Kadish, Nataliya Goulioukina, Irina Beletskaya|2014|Eur.J.Inorg.Chem.||3370|doi:10.1002/ejic.201402161
CCDC 990049: Experimental Crystal Structure Determination
Related Article: Alexander Mitrofanov, Machima Manowong, Yoann Rousselin, Stéphane Brandès, Roger Guilard, Alla Bessmertnykh-Lemeune, Ping Chen, Karl M. Kadish, Nataliya Goulioukina, Irina Beletskaya|2014|Eur.J.Inorg.Chem.||3370|doi:10.1002/ejic.201402161
CCDC 990047: Experimental Crystal Structure Determination
Related Article: Alexander Mitrofanov, Machima Manowong, Yoann Rousselin, Stéphane Brandès, Roger Guilard, Alla Bessmertnykh-Lemeune, Ping Chen, Karl M. Kadish, Nataliya Goulioukina, Irina Beletskaya|2014|Eur.J.Inorg.Chem.||3370|doi:10.1002/ejic.201402161
CCDC 990045: Experimental Crystal Structure Determination
Related Article: Alexander Mitrofanov, Machima Manowong, Yoann Rousselin, Stéphane Brandès, Roger Guilard, Alla Bessmertnykh-Lemeune, Ping Chen, Karl M. Kadish, Nataliya Goulioukina, Irina Beletskaya|2014|Eur.J.Inorg.Chem.||3370|doi:10.1002/ejic.201402161
CCDC 990048: Experimental Crystal Structure Determination
Related Article: Alexander Mitrofanov, Machima Manowong, Yoann Rousselin, Stéphane Brandès, Roger Guilard, Alla Bessmertnykh-Lemeune, Ping Chen, Karl M. Kadish, Nataliya Goulioukina, Irina Beletskaya|2014|Eur.J.Inorg.Chem.||3370|doi:10.1002/ejic.201402161
CCDC 990050: Experimental Crystal Structure Determination
Related Article: Alexander Mitrofanov, Machima Manowong, Yoann Rousselin, Stéphane Brandès, Roger Guilard, Alla Bessmertnykh-Lemeune, Ping Chen, Karl M. Kadish, Nataliya Goulioukina, Irina Beletskaya|2014|Eur.J.Inorg.Chem.||3370|doi:10.1002/ejic.201402161