0000000001232560

AUTHOR

Leo D. Salmi

showing 2 related works from this author

Studies on atomic layer deposition of IRMOF-8 thin films

2015

Deposition of IRMOF-8 thin films by atomic layer deposition was studied at 260–320 C. Zinc acetate and 2,6-naphthalenedicarboxylic acid were used as the precursors. The as-deposited amorphous films were crystallized in 70% relative humidity at room temperature resulting in an unknown phase with a large unit cell. An autoclave with dimethylformamide as the solvent was used to recrystallize the films into IRMOF-8 as confirmed by grazing incidence x-ray diffraction. The films were further characterized by high temperature x-ray diffraction (HTXRD), field emission scanning electron microscopy, Fourier transform infrared spectroscopy (FTIR), time-of-flight elastic recoil detection analysis (TOF-…

Scanning electron microscopeAnalytical chemistryfield emission microscopesInfrared spectroscopyAtomic layer depositionThin filmFourier transform infrared spectroscopyta116kuormausta114ChemistrySurfaces and InterfacesatomikerroskasvatusCondensed Matter PhysicspalladiumX-ray diffractionSurfaces Coatings and FilmsAmorphous solidfourier transform infrared spectroscopyElastic recoil detectionamorphous filmsloadingCarbon filmthin filmsenergy dispersive spectroscopyatomic layer depositionX-ray spectroscopyohutkalvotzinc compoundsscanning electron microscopyJournal of Vacuum Science and Technology A
researchProduct

Studies on atomic layer deposition of MOF-5 thin films

2013

International audience; Deposition of MOF-5 thin films from vapor phase by atomic layer deposition (ALD) was studied at 225-350 degrees C. Zinc acetate (ZnAc2) and 1,4-benzenedicarboxylic acid (1,4-BDC) were used as the precursors. The resulting films were characterized by UV-Vis spectrophotometry, Fourier transform infrared spectroscopy (FTIR), optical microscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), time-of-flight elastic recoil detection analysis (TOF-ERDA), isopropanol adsorption tests, and nanoindentation. It was found out that the as-deposited films were amorphous but crystallized in humid conditions at room temperature. The crystalline films h…

Materials scienceAnalytical chemistry02 engineering and technologyChemical vapor deposition010402 general chemistry01 natural sciencesAtomic layer depositionGeneral Materials ScienceThin filmFourier transform infrared spectroscopyta116ta114General Chemistry[CHIM.MATE]Chemical Sciences/Material chemistryNanoindentationMetal-organic frameworks021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesAmorphous solidElastic recoil detectionCarbon filmMOF-5Mechanics of MaterialsALDHybrid materials0210 nano-technology
researchProduct