0000000001235089

AUTHOR

Alexander Jeremies

Cavitands incorporating a Lewis acid dinickel chelate function as receptors for halide anions.

The halide binding properties of the cavitand [Ni2(L(Me2H4))](2+) (4) are reported. Cavitand 4 exhibits a chelating N3Ni(μ-S)2NiN3 moiety with two square-pyramidal Ni(II)N3S2 units situated in an anion binding pocket of ∼4 Å diameter formed by the organic backbone of the (L(Me2H4))(2-) macrocycle. The receptor reacts with fluoride, chloride (in MeCN/MeOH), and bromide (in MeCN) ions to afford an isostructural series of halogenido-bridged complexes [Ni2(L(Me2H4))(μ-Hal)](+) (Hal = F(-) (5), Cl(-) (6), and Br(-) (7)) featuring a N3Ni(μ-S)2(μ-Hal)NiN3 core structure. No reaction occurs with iodide or other polyatomic anions (ClO4(-), NO3(-), HCO3(-), H2PO4(-), HSO4(-), SO4(2-)). The binding ev…

research product

Azide Binding Controlled by Steric Interactions in Second Sphere. Synthesis, Crystal Structure, and Magnetic Properties of [Ni II 2 (L)(μ 1,1 -N 3 )][ClO 4 ] (L = Macrocyclic N 6 S 2 Ligand)

International audience; The dinuclear Ni-II complex [Ni-2(L-2)][ClO4](2) (3) supported by the 28-membered hexaaza-dithiophenolate macro-cycle (L-2)(2-) binds the N-3(-) ion specifically end-on yielding [Ni-2(L-2)(mu(1,1)-N-3)] [ClO4] (7) or [Ni-2(L-2)(mu(1,1)-N-3)][BPh4] (8), while the previously reported complex [Ni2L1(mu(1,3)-N-3)][ClO4] (2) of the 24-membered macrocycle (L-1)(2-) coordinates it in the end-to-end fashion. A comparison of the X-ray structures of 2, 3, and 7 reveals the form-selective binding of complex 3 to be a consequence of its preorganized, channel-like binding pocket, which accommodates the azide anion via repulsive CH center dot center dot center dot pi interactions …

research product

CCDC 917925: Experimental Crystal Structure Determination

Related Article: Alexander Jeremies, Ulrike Lehmann, Sina Gruschinski, Frederik Schleife, Michel Meyer, Vitaly Matulis, Oleg A. Ivashkevich, Marcel Handke, Karolin Stein, Berthold Kersting|2015|Inorg.Chem.|54|3937|doi:10.1021/acs.inorgchem.5b00123

research product

CCDC 966355: Experimental Crystal Structure Determination

Related Article: Alexander Jeremies, Ulrike Lehmann, Sina Gruschinski, Frederik Schleife, Michel Meyer, Vitaly Matulis, Oleg A. Ivashkevich, Marcel Handke, Karolin Stein, Berthold Kersting|2015|Inorg.Chem.|54|3937|doi:10.1021/acs.inorgchem.5b00123

research product

CCDC 966357: Experimental Crystal Structure Determination

Related Article: Alexander Jeremies, Ulrike Lehmann, Sina Gruschinski, Frederik Schleife, Michel Meyer, Vitaly Matulis, Oleg A. Ivashkevich, Marcel Handke, Karolin Stein, Berthold Kersting|2015|Inorg.Chem.|54|3937|doi:10.1021/acs.inorgchem.5b00123

research product

CCDC 915779: Experimental Crystal Structure Determination

Related Article: Alexander Jeremies, Ulrike Lehmann, Sina Gruschinski, Frederik Schleife, Michel Meyer, Vitaly Matulis, Oleg A. Ivashkevich, Marcel Handke, Karolin Stein, Berthold Kersting|2015|Inorg.Chem.|54|3937|doi:10.1021/acs.inorgchem.5b00123

research product

CCDC 966356: Experimental Crystal Structure Determination

Related Article: Alexander Jeremies, Ulrike Lehmann, Sina Gruschinski, Frederik Schleife, Michel Meyer, Vitaly Matulis, Oleg A. Ivashkevich, Marcel Handke, Karolin Stein, Berthold Kersting|2015|Inorg.Chem.|54|3937|doi:10.1021/acs.inorgchem.5b00123

research product

CCDC 1437970: Experimental Crystal Structure Determination

Related Article: Alexander Jeremies, Sina Gruschinski, Michel Meyer, Vitaly Matulis, Oleg A. Ivashkevich, Karolin Kobalz, and Berthold Kersting|2016|Inorg.Chem.|55|1843|doi:10.1021/acs.inorgchem.5b02743

research product

CCDC 915780: Experimental Crystal Structure Determination

Related Article: Alexander Jeremies, Ulrike Lehmann, Sina Gruschinski, Frederik Schleife, Michel Meyer, Vitaly Matulis, Oleg A. Ivashkevich, Marcel Handke, Karolin Stein, Berthold Kersting|2015|Inorg.Chem.|54|3937|doi:10.1021/acs.inorgchem.5b00123

research product