0000000001235644

AUTHOR

B. Botermann

Test of Time Dilation Using StoredLi+Ions as Clocks at Relativistic Speed

We present the concluding result from an Ives-Stilwell-type time dilation experiment using 7Li+ ions confined at a velocity of β=v/c=0.338 in the storage ring ESR at Darmstadt. A Λ-type three-level system within the hyperfine structure of the 7Li+3S1 →3P2 line is driven by two laser beams aligned parallel and antiparallel relative to the ion beam. The lasers' Doppler shifted frequencies required for resonance are measured with an accuracy of <4×10(-9) using optical-optical double resonance spectroscopy. This allows us to verify the special relativity relation between the time dilation factor γ and the velocity β, γ√1-β2=1 to within ±2.3×10(-9) at this velocity. The result, which is singled …

research product

Testing Time Dilation on Fast Ion Beams

We report the status of an experimental test of time dilation in Special Relativity. This is accomplished by simultaneously measuring the forward and backward Doppler shifts of an electronic transition of fast moving ions, using high-precision laser spectroscopy. From these two Doppler shifts both the ion velocity ? = v/c and the time dilation factor can be derived. From measurements based on saturation spectroscopy on lithium ions stored at ? = 0.03 and ? = 0.06 in the TSR heavy-ion storage ring, we achieved an upper limit for a [?2] deviation from Special Relativity of . In recent measurements on a ? = 0.34 Li+ beam in the ESR storage ring we used optical-optical double-resonance spectros…

research product

Polarization-Dependent Disappearance of a Resonance Signal -- Indication for Optical Pumping in a Storage Ring?

We report on laser spectroscopic measurements on Li$^+$ ions in the experimental storage ring ESR at the GSI Helmholtz Centre for Heavy Ion Research. Driving the $2s\,^3\!{S}_1\;(F=\frac{3}{2}) \,\leftrightarrow\,2p\,^3\!P_2\;(F=\frac{5}{2}) \leftrightarrow 2s\,^3\!{S}_1\;(F=\frac{5}{2})$ $\Lambda$-transition in $^7$Li$^+$ with two superimposed laser beams it was found that the use of circularly polarized light leads to a disappearance of the resonance structure in the fluorescence signal. This can be explained by optical pumping into a dark state of polarized ions. We present a detailed theoretical analysis of this process that supports the interpretation of optical pumping and demonstrate…

research product

Optical measurement of the longitudinal ion distribution of bunched ion beams in the ESR

Abstract An optical technique to study the longitudinal distribution of ions in a bunched ion beam circulating in a storage ring is presented. It is based on the arrival-time analysis of photons emitted after collisional excitation of residual gas molecules. The beam-induced fluorescence was investigated in the ultraviolet regime with a channeltron and in the visible region using a photomultiplier tube. Both were applied to investigate the longitudinal shape of bunched and electron-cooled 209Bi80+ ion beams at about 400 MeV/u in the experimental storage ring (ESR) at GSI Helmholtzzentrum fur Schwerionenforschung in Darmstadt, Germany. Bunch lengths were determined with an uncertainty of abo…

research product

Observation of the hyperfine transition in lithium-like bismuthBi20980+: Towards a test of QED in strong magnetic fields

We performed a laser spectroscopic determination of the $2s$ hyperfine splitting (HFS) of Li-like ${}^{209}{\text{Bi}}^{80+}$ and repeated the measurement of the $1s$ HFS of H-like ${}^{209}{\text{Bi}}^{82+}$. Both ion species were subsequently stored in the Experimental Storage Ring at the GSI Helmholtzzentrum f\"ur Schwerionenforschung Darmstadt and cooled with an electron cooler at a velocity of $\ensuremath{\approx}0.71\phantom{\rule{0.16em}{0ex}}c$. Pulsed laser excitation of the $M1$ hyperfine transition was performed in anticollinear and collinear geometry for ${\text{Bi}}^{82+}$ and ${\text{Bi}}^{80+}$, respectively, and observed by fluorescence detection. We obtain $\ensuremath{\De…

research product

Laser spectroscopy measurement of the 2s-hyperfine splitting in lithium-like bismuth

We have recently reported on the first direct measurement of the $2s$ hyperfine transition in lithium-like bismuth (209Bi80+) at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. Combined with a new measurement of the $1s$ hyperfine splitting (HFS) in hydrogen-like (209Bi82+) the so-called specific difference ${\rm{\Delta }}^{\prime} E=-61.37(36)$ meV could be determined and was found to be in good agreement with its prediction from strong-field bound-state quantum electrodynamics. Here we report on additional investigations performed to estimate systematic uncertainties of these results and on details of the experimental setup. We show that the dominating uncertainty a…

research product

First observation of the ground-state hyperfine transition in 209Bi80+

The long sought after ground-state hyperfine transition in lithium-like bismuth 209Bi80+ was observed for the first time using laser spectroscopy on relativistic ions in the experimental storage ring at the GSI Helmholtz Centre in Darmstadt. Combined with the transition in the corresponding hydrogen-like ion 209Bi82+, it will allow extraction of the specific difference between the two transitions that is unaffected by the magnetic moment distribution in the nucleus and can therefore provide a better test of bound-state QED in extremely strong magnetic fields.

research product

Modern Ives-Stilwell Experiments At Storage Rings: Large Boosts Meet High Precision

We give a brief overview of time dilation tests using high-resolution laser spectroscopy at heavy-ion storage rings. We reflect on the various methods used to eliminate the first-order Doppler effect and on the pitfalls encountered, and comment on possible extensions at future facilities providing relativistic heavy ion beams at $\gamma \gg 1$.

research product