0000000001235644

AUTHOR

B. Botermann

showing 8 related works from this author

Test of Time Dilation Using StoredLi+Ions as Clocks at Relativistic Speed

2014

We present the concluding result from an Ives-Stilwell-type time dilation experiment using 7Li+ ions confined at a velocity of β=v/c=0.338 in the storage ring ESR at Darmstadt. A Λ-type three-level system within the hyperfine structure of the 7Li+3S1 →3P2 line is driven by two laser beams aligned parallel and antiparallel relative to the ion beam. The lasers' Doppler shifted frequencies required for resonance are measured with an accuracy of <4×10(-9) using optical-optical double resonance spectroscopy. This allows us to verify the special relativity relation between the time dilation factor γ and the velocity β, γ√1-β2=1 to within ±2.3×10(-9) at this velocity. The result, which is singled …

PhysicsKennedy–Thorndike experimentQuantum mechanicsTime dilation of moving particlesIves–Stilwell experimentGeneral Physics and AstronomyResonanceTime dilationLorentz covarianceAtomic physicsRelativistic Doppler effectRelativistic speedPhysical Review Letters
researchProduct

Testing Time Dilation on Fast Ion Beams

2011

We report the status of an experimental test of time dilation in Special Relativity. This is accomplished by simultaneously measuring the forward and backward Doppler shifts of an electronic transition of fast moving ions, using high-precision laser spectroscopy. From these two Doppler shifts both the ion velocity ? = v/c and the time dilation factor can be derived. From measurements based on saturation spectroscopy on lithium ions stored at ? = 0.03 and ? = 0.06 in the TSR heavy-ion storage ring, we achieved an upper limit for a [?2] deviation from Special Relativity of . In recent measurements on a ? = 0.34 Li+ beam in the ESR storage ring we used optical-optical double-resonance spectros…

PhysicsHistorybusiness.industryComputer Science ApplicationsEducationIonsymbols.namesakeOpticsIves–Stilwell experimentsymbolsTime dilationAtomic physicsSpectroscopybusinessDoppler effectBeam (structure)Order of magnitudeStorage ringJournal of Physics: Conference Series
researchProduct

Polarization-Dependent Disappearance of a Resonance Signal -- Indication for Optical Pumping in a Storage Ring?

2021

We report on laser spectroscopic measurements on Li$^+$ ions in the experimental storage ring ESR at the GSI Helmholtz Centre for Heavy Ion Research. Driving the $2s\,^3\!{S}_1\;(F=\frac{3}{2}) \,\leftrightarrow\,2p\,^3\!P_2\;(F=\frac{5}{2}) \leftrightarrow 2s\,^3\!{S}_1\;(F=\frac{5}{2})$ $\Lambda$-transition in $^7$Li$^+$ with two superimposed laser beams it was found that the use of circularly polarized light leads to a disappearance of the resonance structure in the fluorescence signal. This can be explained by optical pumping into a dark state of polarized ions. We present a detailed theoretical analysis of this process that supports the interpretation of optical pumping and demonstrate…

Accelerator Physics (physics.acc-ph)Nuclear and High Energy PhysicsPhysics and Astronomy (miscellaneous)Atomic Physics (physics.atom-ph)FOS: Physical sciences53001 natural sciencesIonlaw.inventionPhysics - Atomic PhysicsOptical pumpinglaw0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530010306 general physicsCircular polarizationPhysics010308 nuclear & particles physicsSurfaces and InterfacesLaserPolarization (waves)FluorescenceDark statelcsh:QC770-798Physics - Accelerator PhysicsAtomic physicsStorage ring
researchProduct

Optical measurement of the longitudinal ion distribution of bunched ion beams in the ESR

2013

Abstract An optical technique to study the longitudinal distribution of ions in a bunched ion beam circulating in a storage ring is presented. It is based on the arrival-time analysis of photons emitted after collisional excitation of residual gas molecules. The beam-induced fluorescence was investigated in the ultraviolet regime with a channeltron and in the visible region using a photomultiplier tube. Both were applied to investigate the longitudinal shape of bunched and electron-cooled 209Bi80+ ion beams at about 400 MeV/u in the experimental storage ring (ESR) at GSI Helmholtzzentrum fur Schwerionenforschung in Darmstadt, Germany. Bunch lengths were determined with an uncertainty of abo…

PhysicsNuclear and High Energy PhysicsPhotomultiplierPhotonIon beamIonizationPhysics::Accelerator PhysicsAtomic physicsInstrumentationCollisional excitationBeam (structure)Storage ringIonNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Observation of the hyperfine transition in lithium-like bismuthBi20980+: Towards a test of QED in strong magnetic fields

2014

We performed a laser spectroscopic determination of the $2s$ hyperfine splitting (HFS) of Li-like ${}^{209}{\text{Bi}}^{80+}$ and repeated the measurement of the $1s$ HFS of H-like ${}^{209}{\text{Bi}}^{82+}$. Both ion species were subsequently stored in the Experimental Storage Ring at the GSI Helmholtzzentrum f\"ur Schwerionenforschung Darmstadt and cooled with an electron cooler at a velocity of $\ensuremath{\approx}0.71\phantom{\rule{0.16em}{0ex}}c$. Pulsed laser excitation of the $M1$ hyperfine transition was performed in anticollinear and collinear geometry for ${\text{Bi}}^{82+}$ and ${\text{Bi}}^{80+}$, respectively, and observed by fluorescence detection. We obtain $\ensuremath{\De…

PhysicschemistryNuclear structurechemistry.chemical_elementLithiumElectronAtomic physicsHyperfine structureAtomic and Molecular Physics and OpticsExcitationIonBismuthMagnetic fieldPhysical Review A
researchProduct

Laser spectroscopy measurement of the 2s-hyperfine splitting in lithium-like bismuth

2017

We have recently reported on the first direct measurement of the $2s$ hyperfine transition in lithium-like bismuth (209Bi80+) at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt, Germany. Combined with a new measurement of the $1s$ hyperfine splitting (HFS) in hydrogen-like (209Bi82+) the so-called specific difference ${\rm{\Delta }}^{\prime} E=-61.37(36)$ meV could be determined and was found to be in good agreement with its prediction from strong-field bound-state quantum electrodynamics. Here we report on additional investigations performed to estimate systematic uncertainties of these results and on details of the experimental setup. We show that the dominating uncertainty a…

IONSRINGGeneral PhysicsHydrogenProtonhyperfine structure0205 Optical Physics0307 Theoretical And Computational Chemistrychemistry.chemical_elementBEAMPhysics Atomic Molecular & ChemicalPROTON01 natural sciencesIonBismuthGSI0202 Atomic Molecular Nuclear Particle And Plasma Physicsrelativistic and QED effects in ions0103 physical sciencesPhysics::Atomic PhysicsNuclear Experiment010306 general physicsSpectroscopyHyperfine structureESRPhysicsScience & Technology010308 nuclear & particles physicsPhysicsOpticsHYDROGENCondensed Matter PhysicsAtomic and Molecular Physics and OpticschemistryPhysical Scienceslaser spectroscopyLithiumAtomic physicsTRANSITIONSTORAGEJournal of Physics B: Atomic, Molecular and Optical Physics
researchProduct

First observation of the ground-state hyperfine transition in 209Bi80+

2013

The long sought after ground-state hyperfine transition in lithium-like bismuth 209Bi80+ was observed for the first time using laser spectroscopy on relativistic ions in the experimental storage ring at the GSI Helmholtz Centre in Darmstadt. Combined with the transition in the corresponding hydrogen-like ion 209Bi82+, it will allow extraction of the specific difference between the two transitions that is unaffected by the magnetic moment distribution in the nucleus and can therefore provide a better test of bound-state QED in extremely strong magnetic fields.

PhysicsMagnetic momentchemistry.chemical_elementCondensed Matter PhysicsAtomic and Molecular Physics and OpticsIonBismuthMagnetic fieldchemistryPhysics::Atomic PhysicsAtomic physicsNuclear ExperimentGround stateSpectroscopyHyperfine structureMathematical PhysicsStorage ringPhysica Scripta
researchProduct

Modern Ives-Stilwell Experiments At Storage Rings: Large Boosts Meet High Precision

2013

We give a brief overview of time dilation tests using high-resolution laser spectroscopy at heavy-ion storage rings. We reflect on the various methods used to eliminate the first-order Doppler effect and on the pitfalls encountered, and comment on possible extensions at future facilities providing relativistic heavy ion beams at $\gamma \gg 1$.

High Energy Physics - Experiment (hep-ex)Atomic Physics (physics.atom-ph)FOS: Physical sciencesPhysics - Atomic PhysicsHigh Energy Physics - ExperimentPhysics - OpticsOptics (physics.optics)
researchProduct