0000000001236858

AUTHOR

M. Straub

showing 6 related works from this author

Spin Physics at MAMI

1991

Nuclear physicsPhysics
researchProduct

Techniques for measuring aerosol attenuation using the Central Laser Facility at the Pierre Auger Observatory

2013

The Pierre Auger Observatory in Malargue, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 10(18) eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, lo…

AstronomyDetector alignment and calibration methods (lasers sources particle-beams)01 natural sciencesDetector alignment and calibration methods (laserObservatoryATMOSPHERIC CONDITIONSDetector alignment and calibration methodsInstrumentationcosmic rayMathematical PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsatmospheric monitoring[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PhysicsData analysiparticle-beams)ComputingMethodologies_DOCUMENTANDTEXTPROCESSINGCentral Laser FacilityFísica nuclearAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical Phenomenasources[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]sourceAuger Experimentaerosols * Authors are listed on the following pagesData analysisFOS: Physical sciencesCosmic rayAuger Experiment; cosmic rays; atmospheric monitoring; aerosolsOpticscosmic raysUltra-high energy cosmic rays. atmospheric monitoring. aerosols0103 physical sciences010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Pierre Auger Observatory010308 nuclear & particles physicsbusiness.industryLarge detector systems for particle and astroparticle physicsAttenuationAtmospheric correctionUltra-high energy cosmic rays[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]AerosolDetector alignment and calibration methods (lasersAir showerdetector alignment and calibration methods (lasers; sources; particle-beams); large detector systems for particle and astroparticle physics; data analysisExperimental High Energy PhysicsLarge detector systems for particle and astroparticle physicbusinessRAIOS CÓSMICOSaerosolsSYSTEM
researchProduct

Identifying clouds over the Pierre Auger Observatory using infrared satellite data

2013

We describe a new method of identifying night-time clouds over the Pierre Auger Observatory using infrared data from the Imager instruments on the GOES-12 and GOES-13 satellites. We compare cloud. identifications resulting from our method to those obtained by the Central Laser Facility of the Auger Observatory. Using our new method we can now develop cloud probability maps for the 3000 km(2) of the Pierre Auger Observatory twice per hour with a spatial resolution of similar to 2.4 km by similar to 5.5 km. Our method could also be applied to monitor cloud cover for other ground-based observatories and for space-based observatories. (C) 2013 Elsevier B.V. All rights reserved.

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Atmospheric MonitoringSatellitesInfraredAstronomyCloud coverFOS: Physical sciencesAtmospheric monitoring01 natural sciencesCiencias de la Tierra y relacionadas con el Medio AmbienteAuger//purl.org/becyt/ford/1 [https]//purl.org/becyt/ford/1.5 [https]ObservatoryClouds0103 physical sciencesExtensive air showers010306 general physicsDETECTORInstrumentation and Methods for Astrophysics (astro-ph.IM)Image resolutionCiencias ExactasPhysicsPierre Auger ObservatoryUHE Cosmic Rays atmosphere010308 nuclear & particles physicsPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]FísicaAstronomyPierre Auger ObservatoryAstronomy and AstrophysicsUltra-high energy cosmic rays[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]INFRAVERMELHOExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGPierre Auger observatoryultra-high energy cosmic rays; Pierre Auger Observatory; extensive air showers; atmospheric monitoring; clouds; satellitesFísica nuclearSatelliteCentral Laser FacilityExtensive Air ShowersAstrophysics - Instrumentation and Methods for AstrophysicsMeteorología y Ciencias AtmosféricasSYSTEMCIENCIAS NATURALES Y EXACTASAstroparticle Physics
researchProduct

Probing the radio emission from air showers with polarization measurements

2014

The emission of radio waves from air showers has been attributed to the so-called geomagnetic emission process. At frequencies around 50 MHz this process leads to coherent radiation which can be observed with rather simple setups. The direction of the electric field induced by this emission process depends only on the local magnetic field vector and on the incoming direction of the air shower. We report on measurements of the electric field vector where, in addition to this geomagnetic component, another component has been observed which cannot be described by the geomagnetic emission process. The data provide strong evidence that the other electric field component is polarized radially wit…

SignalsAstronomy01 natural sciencesElectric fieldComputational physicsCosmic-raysComposition energy spectra and interactionscosmic rayRadio wavePhysicsEarth's magnetic fieldHigh Energy Astrophysical Phenomena (astro-ph.HE)Radiation[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph][SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PhysicsAstrophysics::Instrumentation and Methods for AstrophysicsPolarization (waves)Polarization (waves)BolometersThunderstormsMagnetic fieldComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaCAMPO MAGNÉTICOradio emissionRadio waveNuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Air showerComposition energy spectra and interactions; Solar electromagnetic emission; BolometersAstrophysics::High Energy Astrophysical Phenomenainfrared submillimeter wave microwave and radiowave receivers and detectorsFieldFOS: Physical sciencesPierre Auger Observatory ; air shower ; radio emissionRadiationMonte-carlo SimulationsOpticsElectric field0103 physical sciencesddc:530Pierre auger observatory010306 general physicsPulsesInstrumentation and Methods for Astrophysics (astro-ph.IM)Pierre Auger Observatory010308 nuclear & particles physicsbusiness.industrySolar electromagnetic emissionFísicaOpticsDetectorComputational physics[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Air showerEarth's magnetic fieldMagnetic fieldExperimental High Energy PhysicsbusinessCodalema
researchProduct

Bounds on the density of sources of ultra-high energy cosmic rays from the Pierre Auger Observatory

2013

We derive lower bounds on the density of sources of ultra-high energy cosmic rays from the lack of significant clustering in the arrival directions of the highest energy events detected at the Pierre Auger Observatory. The density of uniformly distributed sources of equal intrinsic intensity was found to be larger than similar to (0.06 – 5) x 10(-4) Mpc(-3) at 95% CL, depending on the magnitude of the magnetic defections. Similar bounds, in the range (0.2 – 7) x 10(-4) Mpc(-3), were obtained for sources following the local matter distribution.

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Ciencias FísicasAstronomyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesultra-high energy cosmic raysCosmic rayAstrophysicsultra high energy cosmic raysAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesAugerNUMBERObservatoryCosmic ray experiments0103 physical sciencesultra-high energy cosmic rayUltra-high-energy cosmic ray010303 astronomy & astrophysicsDETECTORLuminosity functionPierre Auger ObservatoryPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)FÍSICA DE PARTÍCULASRange (particle radiation)SPECTRUMCosmologia010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astronomy and AstrophysicsUltra high energy cosmic raysAstronomíaLUMINOSITY FUNCTIONMagnitude (astronomy)Experimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGAstronomiaFísica nuclearcosmic ray experimentsAstrophysics - High Energy Astrophysical Phenomenacosmic ray experiments; ultra high energy cosmic raysCIENCIAS NATURALES Y EXACTAS
researchProduct

Origin of atmospheric aerosols at the Pierre Auger Observatory using studies of air mass trajectories in South America

2014

The Pierre Auger Observatory is making significant contributions towards understanding the nature and origin of ultra-high energy cosmic rays. One of its main challenges is the monitoring of the atmosphere, both in terms of its state variables and its optical properties. The aim of this work is to analyze aerosol optical depth $\tau_{\rm a}(z)$ values measured from 2004 to 2012 at the observatory, which is located in a remote and relatively unstudied area of the Pampa Amarilla, Argentina. The aerosol optical depth is in average quite low - annual mean $\tau_{\rm a}(3.5~{\rm km})\sim 0.04$ - and shows a seasonal trend with a winter minimum - $\tau_{\rm a}(3.5~{\rm km})\sim 0.03$ -, and a sum…

Atmospheric Science010504 meteorology & atmospheric sciencesaerosolAstronomyObservatoriesAerosol concentrationAir pollution010501 environmental sciencesAtmospheric sciencesmedicine.disease_causeAerosols Atmospheric aerosols Augers Cosmic rays Observatories; Aerosol concentration Aerosol optical depths Air mass Atmospheric effects GDAS HYSPLIT Pierre Auger observatory Ultra high-energy cosmic rays; Meteorology; aerosol property air mass concentration (composition) optical depth trajectory urban area urban atmosphere; Argentina01 natural sciencesoptical depthObservatory11. Sustainabilityddc:550MeteorologiaAugersmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsconcentration (composition)Physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]urban atmosphereAtmospheric effectsGDASAtmospheric aerosolscosmic ray; aerosol; air masses; atmospheric effectPhysics - Atmospheric and Oceanic PhysicstrajectoryClimatologyComputingMethodologies_DOCUMENTANDTEXTPROCESSINGHYSPLITAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaPollutionaerosol property[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]media_common.quotation_subjectatmospheric effectArgentinaFOS: Physical sciencesHYSPLITAtmósferaAtmosphereMeteorologycosmic raysmedicineAerosol optical depthsInstrumentation and Methods for Astrophysics (astro-ph.IM)Cosmic raysCiencias ExactasAir mass0105 earth and related environmental sciencesAerosols[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]Pierre Auger ObservatoryFísicaASTROFÍSICA[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Aerosol13. Climate actionExperimental High Energy PhysicsAtmospheric and Oceanic Physics (physics.ao-ph)Pierre Auger observatoryAir massair massesUltra high-energy cosmic raysurban area
researchProduct