0000000001237318

AUTHOR

M. Civitani

showing 4 related works from this author

Active shape correction of a thin glass/plastic x-ray mirror

2015

Optics for future X-ray telescopes will be characterized by very large aperture and focal length, and will be made of lightweight materials like glass or plastic in order to keep the total mass within acceptable limits. Optics based on thin slumped glass foils are currently in use in the NuSTAR telescope and are being developed at various institutes like INAF/OAB, aiming at improving the angular resolution to a few arcsec HEW. Another possibility would be the use of thin plastic foils, being developed at SAO and the Palermo University. Even if relevant progresses in the achieved angular resolution were recently made, a viable possibility to further improve the mirror figure would be the app…

Materials scienceFOS: Physical sciencesX-ray telescopeSettore ING-INF/01 - ElettronicaFeedbacklaw.inventionTelescopeSettore FIS/05 - Astronomia E AstrofisicaOpticsApertureslawX-raysFocal lengthAngular resolutionInstrumentation and Methods for Astrophysics (astro-ph.IM)Image resolutionX-ray telescopesSpatial resolutionbusiness.industryGlassesOpticsActive opticsPiezoelectricityMirrorsAstrophysics - Instrumentation and Methods for AstrophysicsbusinessActuatorActuatorsTelescopesSPIE Proceedings
researchProduct

Manufacturing and testing a thin glass mirror shell with piezoelectric active control

2015

Optics for future X-ray telescopes will be characterized by very large aperture and focal length, and will be made of lightweight materials like glass or silicon in order to keep the total mass within acceptable limits. Optical modules based on thin slumped glass foils are being developed at various institutes, aiming at improving the angular resolution to a few arcsec HEW. Thin mirrors are prone to deform, so they require a careful integration to avoid deformations and even correct forming errors. On the other hand, this offers the opportunity to actively correct the residual deformation: a viable possibility to improve the mirror figure is the application of piezoelectric actuators onto t…

Physics - Instrumentation and DetectorsMaterials scienceactive opticFOS: Physical sciencesMechanical engineeringpiezoelectric actuatorthin glass mirrorInstrumentation and Detectors (physics.ins-det)Settore ING-INF/01 - ElettronicaPiezoelectricitySignallaw.inventionPrinted circuit boardSettore FIS/05 - Astronomia E AstrofisicalawFocal lengthAngular resolutionPhotolithographyX-ray mirrorsAstrophysics - Instrumentation and Methods for AstrophysicsActuatorInstrumentation and Methods for Astrophysics (astro-ph.IM)VoltageSPIE Proceedings
researchProduct

The NHXM observatory

2011

Exploration of the X-ray sky has established X-ray astronomy as a fundamental astrophysical discipline. While our knowledge of the sky below 10 keV has increased dramatically (∼8 orders of magnitude) by use of grazing incidence optics, we still await a similar improvement above 10 keV, where to date only collimated instruments have been used. Also ripe for exploration is the field of X-ray polarimetry, an unused fundamental tool to understand the physics and morphology of X-ray sources. Here we present a novel mission, the New Hard X-ray Mission (NHXM) that brings together for the first time simultaneous high-sensitivity, hard-X-ray imaging, broadband spectroscopy and polarimetry. NHXM will…

Black-holesAcceleration mechanismCosmic Visionmedia_common.quotation_subjectPolarimetry7. Clean energy01 natural sciencesMissionsCosmologyPhysical cosmologyNon-thermal emissionAcceleration mechanism; Accretion physics; Black-holes; Compact objects; Cosmology; Missions; Non-thermal emission; X-ray imaging; X-ray polarimetry; Astronomy and Astrophysics; Space and Planetary ScienceObservatory0103 physical sciencesBroadbandX-ray polarimetry010303 astronomy & astrophysicsCompact objectsmedia_commonPhysics010308 nuclear & particles physicsX-ray imagingVegaAstronomyAstronomy and AstrophysicsAccretion physicsCosmologySkySpace and Planetary ScienceExperimental Astronomy
researchProduct

XIPE: the X-ray imaging polarimetry explorer

2013

arXiv:1309.6995v1.-- et al.

AstronomyAstrophysics::High Energy Astrophysical PhenomenaPolarimetryFOS: Physical sciencesAstrophysics7. Clean energy01 natural scienceslaw.inventionX-raySettore FIS/05 - Astronomia E Astrofisicalaw0103 physical sciencesPolarimetry010303 astronomy & astrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Solar and Stellar Astrophysics (astro-ph.SR)Astronomy X-ray PolarimetryPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Solar flare[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]White dwarfAstronomy and AstrophysicsTorusMagnetic reconnectionPolarization (waves)Neutron starAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary Science[SDU]Sciences of the Universe [physics]Astrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsFlare
researchProduct