0000000001238216

AUTHOR

Giovanni Iacca

showing 6 related works from this author

Disturbed Exploitation compact Differential Evolution for Limited Memory Optimization Problems

2011

This paper proposes a novel and unconventional Memetic Computing approach for solving continuous optimization problems characterized by memory limitations. The proposed algorithm, unlike employing an explorative evolutionary framework and a set of local search algorithms, employs multiple exploitative search within the main framework and performs a multiple step global search by means of a randomized perturbation of the virtual population corresponding to a periodical randomization of the search for the exploitative operators. The proposed Memetic Computing approach is based on a populationless (compact) evolutionary framework which, instead of processing a population of solutions, handles …

Continuous optimizationta113education.field_of_studyMathematical optimizationInformation Systems and ManagementOptimization problemdifferential evolutionCrossoverPopulationEvolutionary algorithmComputer Science ApplicationsTheoretical Computer ScienceArtificial IntelligenceControl and Systems Engineeringmemetic computingDifferential evolutionMemetic algorithmevolutionary algorithmseducationcompact algorithmsSoftwarePremature convergenceMathematicsInformation Sciences
researchProduct

Super-fit and population size reduction in compact Differential Evolution

2011

Although Differential Evolution is an efficient and versatile optimizer, it has a wide margin of improvement. During the latest years much effort of computer scientists studying Differential Evolution has been oriented towards the improvement of the algorithmic paradigm by adding and modifying components. In particular, two modifications lead to important improvements to the original algorithmic performance. The first is the super-fit mechanism, that is the injection at the beginning of the optimization process of a solution previously improved by another algorithm. The second is the progressive reduction of the population size during the evolution of the population. Recently, the algorithm…

ta113Mathematical optimizationeducation.field_of_studyMeta-optimizationFitness landscapeComputer sciencePopulation-based incremental learningPopulationContext (language use)Reduction (complexity)Differential evolutionAlgorithm designeducationAlgorithm2011 IEEE Workshop on Memetic Computing (MC)
researchProduct

Ockham's Razor in Memetic Computing: Three Stage Optimal Memetic Exploration

2012

Memetic computing is a subject in computer science which considers complex structures as the combination of simple agents, memes, whose evolutionary interactions lead to intelligent structures capable of problem-solving. This paper focuses on memetic computing optimization algorithms and proposes a counter-tendency approach for algorithmic design. Research in the field tends to go in the direction of improving existing algorithms by combining different methods or through the formulation of more complicated structures. Contrary to this trend, we instead focus on simplicity, proposing a structurally simple algorithm with emphasis on processing only one solution at a time. The proposed algorit…

FOS: Computer and information sciencesComputer Science - Machine LearningInformation Systems and ManagementComputer scienceComputer Science - Artificial Intelligencemedia_common.quotation_subjectEvolutionary algorithmComputational intelligenceField (computer science)Theoretical Computer ScienceMachine Learning (cs.LG)Artificial IntelligenceSimplicitymemetic algorithmsevolutionary algorithmsmedia_common:Engineering::Computer science and engineering [DRNTU]business.industrycomputational intelligence optimizationComputer Science ApplicationsArtificial Intelligence (cs.AI)Control and Systems Engineeringmemetic computing:Engineering::Electrical and electronic engineering [DRNTU]Memetic algorithmAlgorithm designArtificial intelligencebusinessSoftware
researchProduct

Ensemble strategies in Compact Differential Evolution

2011

Differential Evolution is a population based stochastic algorithm with less number of parameters to tune. However, the performance of DE is sensitive to the mutation and crossover strategies and their associated parameters. To obtain optimal performance, DE requires time consuming trial and error parameter tuning. To overcome the computationally expensive parameter tuning different adaptive/self-adaptive techniques have been proposed. Recently the idea of ensemble strategies in DE has been proposed and favorably compared with some of the state-of-the-art self-adaptive techniques. Compact Differential Evolution (cDE) is modified version of DE algorithm which can be effectively used to solve …

ta113Mathematical optimizationStochastic processComputer scienceDifferential evolutionCrossoverGlobal optimizationEvolutionary computation2011 IEEE Congress of Evolutionary Computation (CEC)
researchProduct

A Differential Evolution Framework with Ensemble of Parameters and Strategies and Pool of Local Search Algorithms

2014

The file attached to this record is the author's final peer reviewed version. The publisher's final version can be found by following the DOI link. The ensemble structure is a computational intelligence supervised strategy consisting of a pool of multiple operators that compete among each other for being selected, and an adaptation mechanism that tends to reward the most successful operators. In this paper we extend the idea of the ensemble to multiple local search logics. In a memetic fashion, the search structure of an ensemble framework cooperatively/competitively optimizes the problem jointly with a pool of diverse local search algorithms. In this way, the algorithm progressively adapts…

Structure (mathematical logic)Theoretical computer sciencebusiness.industryComputer scienceMeta-heuristicsComputational intelligenceAdaptive algorithmsDifferential evolutionLocal search (optimization)OptimisationDifferential evolutionAdaptation (computer science)businessGlobal optimizationAlgorithmMetaheuristicEnsembleMemetic ComputingCurse of dimensionality
researchProduct

Memory-saving optimization algorithms for systems with limited hardware

2011

evolutionary algorithmmemetic algorithmdifferentiaalievoluutiodifferential evolutiontietämystekniikkamemeettiset algoritmitgeneettiset algoritmitglobal optimizationevoluutioalgoritmitcomputational ingelligencelaskennallinen älykkyysevoluutiolaskentacompact optimizationtekoälymatemaattinen optimointialgorithmic enhancementskoneoppiminenoptimointioptimointimenetelmätmemetic computingalgoritmitevolutionary computingpopulation-less optimizationsingle-solution optimization
researchProduct