0000000001239251

AUTHOR

K. Miwa

showing 7 related works from this author

EXTRACTION OF ΛΛ SCATTERING LENGTH

2009

We determine ΛΛ scattering parameters from a ΛΛ invariant mass spectrum that was obtained by 12 C (K-, K+ΛΛ) reaction at the KEK Proton Synchrotron. In the framework of Watson's procedure, the obtained scattering length [Formula: see text] and effective range [Formula: see text] are most consistent with the values predicted by using the Nijmegen soft core models (NSC97's). However, the predicted values by using the Nijmegen hard-core ND ( G -matrix) and the extended soft-core (ESC00) models are out of two standard deviations from the determined scattering parameters.

PhysicsNuclear physicsNuclear and High Energy PhysicsRange (particle radiation)Soft coreExtraction (chemistry)Scattering parametersGeneral Physics and AstronomyProton SynchrotronInvariant massScattering lengthLambdaStandard deviationInternational Journal of Modern Physics E
researchProduct

Status of the J-PARC E07, Systematic Study of Double Strangeness Nuclei with the Hybrid Emulsion Method

2019

The current status of the J-PARC E07 experiment and two typical events, a _ΛΛBe hypernuclear event named “MINO” and \(_{\Xi }^{15}\text{C}\) hypernuclear event named “IBUKI”, are presented. J-PARC E07 is the most complex emulsion experiment so far to investigate double hypernuclei. The physics run at the K1.8 beam line in the J-PARC hadron facility and photographic development of all emulsion sheets have been completed. The emulsion sheets are presently being analyzed with dedicated optical microscopes. Current statistics are estimated to be about twice that of KEK-PS E373. Quantitative data on ΔB_ΛΛ of double Λ hypernucleus and \(B_{\Xi ^{ - }}\) of Ξ hypernucleus are being accumulated suc…

PhysicsNuclear physicsHadronEmulsionJ-PARCStrangenessHypernucleusEvent (particle physics)Proceedings of the 8th International Conference on Quarks and Nuclear Physics (QNP2018)
researchProduct

J-PARC E07: Systematic Study of Double Strangeness System with Hybrid Emulsion Method

2021

Nuclear physicsPhysicsEmulsionJ-PARCStrangenessProceedings of the 3rd J-PARC Symposium (J-PARC2019)
researchProduct

OUP accepted manuscript

2021

PhysicsNuclear physics010308 nuclear & particles physics0103 physical sciencesGeneral Physics and Astronomy010306 general physicsHypernucleus01 natural sciencesProgress of Theoretical and Experimental Physics
researchProduct

Observation of Coulomb-Assisted Nuclear Bound State of Ξ−–N14 System

2021

In an emulsion-counter hybrid experiment performed at J-PARC, a Ξ^{-} absorption event was observed which decayed into twin single-Λ hypernuclei. Kinematic calculations enabled a unique identification of the reaction process as Ξ^{-}+^{14}N→_{Λ}^{10}Be+_{Λ}^{5}He. For the binding energy of the Ξ^{-} hyperon in the Ξ^{-}-^{14}N system a value of 1.27±0.21  MeV was deduced. The energy level of Ξ^{-} is likely a nuclear 1p state which indicates a weak ΞN-ΛΛ coupling.

PhysicsBinding energyHyperonGeneral Physics and AstronomyState (functional analysis)Coupling (probability)01 natural sciences0103 physical sciencesBound stateCoulombAbsorption (logic)Atomic physics010306 general physicsEnergy (signal processing)Physical Review Letters
researchProduct

Observation of Coulomb-assisted nuclear bound state of $��^-$-$^{14}$N system

2020

In an emulsion-counter hybrid experiment performed at J-PARC, a $��^-$ absorption event was observed which decayed into twin single-$��$ hypernuclei. Kinematic calculations enabled a unique identification of the reaction process as $��^{-} + ^{14}$N$\ \rightarrow\ ^{10}_��$Be + $^5_��$He. For the binding energy of the $��^{-}$ hyperon in the $��^-$-$^{14}$N system a value of $1.27 \pm 0.21$ MeV was deduced. The energy level of $��^-$ is likely a nuclear $1p$ state which indicates a weak $��N$-$����$ coupling.

FOS: Physical sciencesNuclear Experiment (nucl-ex)
researchProduct

Observation of Coulomb-assisted nuclear bound state of $\Xi^-$-$^{14}$N system

2020

In an emulsion-counter hybrid experiment performed at J-PARC, a $\Xi^-$ absorption event was observed which decayed into twin single-$\Lambda$ hypernuclei. Kinematic calculations enabled a unique identification of the reaction process as $\Xi^{-} + ^{14}$N$\ \rightarrow\ ^{10}_\Lambda$Be + $^5_\Lambda$He. For the binding energy of the $\Xi^{-}$ hyperon in the $\Xi^-$-$^{14}$N system a value of $1.27 \pm 0.21$ MeV was deduced. The energy level of $\Xi^-$ is likely a nuclear $1p$ state which indicates a weak ${\Xi}N$-$\Lambda\Lambda$ coupling.

Nuclear ExperimentNuclear Experiment
researchProduct