0000000001243081

AUTHOR

Francesco Amadeo

0000-0002-3868-2348

showing 2 related works from this author

Culture into perfusion-assisted bioreactor promotes valve-like tissue maturation of recellularized pericardial membrane

2020

Derivation of tissue-engineered valve replacements is a strategy to overcome the limitations of the current valve prostheses, mechanical, or biological. In an effort to set living pericardial material for aortic valve reconstruction, we have previously assessed the efficiency of a recellularization strategy based on a perfusion system enabling mass transport and homogenous distribution of aortic valve-derived “interstitial” cells inside decellularized pericardial material. In the present report, we show that alternate perfusion promoted a rapid growth of valve cells inside the pericardial material and the activity of a proliferation-supporting pathway, likely controlled by the YAP transcrip…

0301 basic medicineAortic valvelcsh:Diseases of the circulatory (Cardiovascular) systemCardiovascular Medicine030204 cardiovascular system & hematologyProtein contentBiomaterials03 medical and health sciences0302 clinical medicineBioreactormedicinePericardiumEngineered tissueOriginal ResearchDecellularizationChemistryPerfusion systemBiomaterialValve interstitial cell030104 developmental biologymedicine.anatomical_structureMembranelcsh:RC666-701Valve implantCardiology and Cardiovascular MedicinePerfusionPericardiumBiomedical engineering
researchProduct

Reduction of Cardiac Fibrosis by Interference With YAP-Dependent Transactivation

2022

Background: Conversion of cardiac stromal cells into myofibroblasts is typically associated with hypoxia conditions, metabolic insults, and/or inflammation, all of which are predisposing factors to cardiac fibrosis and heart failure. We hypothesized that this conversion could be also mediated by response of these cells to mechanical cues through activation of the Hippo transcriptional pathway. The objective of the present study was to assess the role of cellular/nuclear straining forces acting in myofibroblast differentiation of cardiac stromal cells under the control of YAP (yes-associated protein) transcription factor and to validate this finding using a pharmacological agent that interf…

Transcriptional ActivationPhysiologyfibrosismyofibroblastsVerteporfinheart failureYAP-Signaling ProteinsSettore MED/11 - Malattie dell'Apparato CardiovascolareSettore MED/23 - Chirurgia Cardiacafibrosis; heart failure; myofibroblasts; stromal cell; transcription factorsstromal cellPhosphoproteinscell mechanics; fibrosis; heart failure; myofibroblasts; stromal cell; YAP transcription factor;MiceYAP transcription factorcell mechanicsSettore CHIM/09 - Farmaceutico Tecnologico Applicativotranscription factorsTrans-ActivatorsAnimalsHumansCardiology and Cardiovascular MedicineAdaptor Proteins Signal Transducing
researchProduct