0000000001247510

AUTHOR

Pengfei Ma

showing 12 related works from this author

Electrochemical Treatment of Synthetic Wastewaters Contaminated by Organic Pollutants at Ti 4 O 7 Anode. Study of the Role of Operative Parameters by…

2022

In the last years, an increasing attention has been devoted to the utilization of anodic oxidation (AO) technologies for the treatment of wastewater polluted by recalcitrant organics. Recently, Ti4O7 was proposed as a promising anode for AO for the treatment of various organics. Here the potential utilization of commercial Ti4O7 anodes has been evaluated considering the electrochemical treatment of synthetic wastewater contaminated by three very different organic molecules (namely, oxalic acid, phenol and Acid Orange 7), all characterized by a very high resistance to AO. The performances of Ti4O7 were compared with that of two largely investigated anodes: Boron-doped diamond (BDD), which is…

Anodic Oxidation • BDD • Ti4O7 • Toxic organic compounds • wastewater treatmentElectrochemistrySettore ING-IND/27 - Chimica Industriale E TecnologicaCatalysisChemElectroChem
researchProduct

Electrochemical treatment of real wastewater with low conductivity

2018

In the last years, many efforts have been devoted to the development of electrochemical processes for the effective treatment of wastewater contaminated by organic pollutants resistant to conventional biological processes and/or toxic for microorganisms [1–5]. It was shown that some electrochemical approaches, including the direct anodic oxidation at suitable anodes such as boron-doped diamond (BDD) and/or electro-Fenton (EF) at suitable operating conditions and cells [1–6] could allow treating effectively a very large number of organic pollutants. However, most of the investigations were performed using synthetic wastewater. Hence, it is now mandatory to study the problems connected to the…

Settore ING-IND/27 - Chimica Industriale E Tecnologicawastewater low conductivity BDD electrochemical oxidation microfluidic cost analysis
researchProduct

Electrochemical Treatment of Wastewater by ElectroFenton, Photo-ElectroFenton, Pressurized- ElectroFenton and Pressurized Photo ElectroFenton: A Firs…

2021

In the last few years increasing attention has been devoted to the utilization of electroFenton (EF) and EF based technologies for the treatment of wastewater polluted by recalcitrant organics. It has been shown that the performances of EF can be strongly improved using ultraviolet (UV) irradiation, e.g., by the photo-electroFenton (PEF) method, or pressurized air or oxygen, e.g., by the pressurized-electroFenton (PrEF) one. Although several studies were carried out on the degradation of many organic pollutants using EF, PEF or PrEF, a systematic comparison between PEF and PrEF was never reported as well as the possibility to couple the irradiation with pressurized air. In this study the pe…

Waste managementWastewaterChemistryElectrochemistrySettore ING-IND/27 - Chimica Industriale E TecnologicaElectrochemistryCatalysiselectroFenton photo-electroFenton pressurized- electroFenton pressurized photo-electroFenton wastewater treatment
researchProduct

Removal of Phenol from Water in the Presence of NaCl in Undivided Cells Equipped with Carbon Felt or Ni Cathodes: Effect of Air Pressure

2022

Recently, the electrochemical treatment of wastewater polluted by recalcitrant organics and containing chlorides was shown to be significantly improved adopting proper operative conditions such as suitable anodes and cathodes and low current density. In particular, the use of suitable cathodes such as carbon felt or silver could increase the removal of TOC and reduce the formation of chlorinated by-products. In this study, attention was focused on the utilization of carbon felt cathodes with the main aim to evaluate the effect of air pressure on the process using phenol as model organic pollutant. It was shown that, in the presence of carbon felt cathode, the use of pressurized air allows b…

active chlorine specieelectrochlorinationtoxic chlorinated compoundsElectrochemistryair pressureSettore ING-IND/27 - Chimica Industriale E Tecnologicaelectro-FentonCatalysis
researchProduct

Assisted reverse electrodialysis for CO2 electrochemical conversion and treatment of wastewater: A new approach towards more eco-friendly processes u…

2020

Abstract In this paper, the utilization of assisted reverse electrodialysis (A-RED), recently used for pre-desalination, is proposed as a general method to reduce the energy requirements of electrolysis processes and evaluated for two model processes: (i) the cathodic conversion of carbon dioxide to formic acid; (ii) the anodic treatment of water contaminated by organics. In A-RED, two solutions with different salt content and an external potential difference, applied in the direction of the natural salinity gradient, are both used to drive redox processes. It was shown, for the first time, that the cathodic conversion of CO2 to formic acid can be performed by both reverse electrodialysis (…

ElectrolysisChemistryFormic acidGeneral Chemical Engineering02 engineering and technologySettore ING-IND/27 - Chimica Industriale E Tecnologica010402 general chemistry021001 nanoscience & nanotechnologyElectrochemistryPulp and paper industry01 natural sciences0104 chemical scienceslaw.inventionCathodic protectionAnodeSalinitychemistry.chemical_compoundWastewaterlawReversed electrodialysisReverse electrodialysis (RED)Assisted reverse electrodialysis (A-RED)Conversion of carbon dioxideWastewater treatmentElectrochemistry0210 nano-technologyElectrochimica Acta
researchProduct

Specific separation and recovery of phosphate anions by a novel NiFe-LDH/rGO hybrid film based on electroactivity-variable valence

2022

Phosphorus is a non-renewable resource. Supplies are limited and much phosphorus is currently wasted during the production and utilization process, causing concerns about future supplies and widespread environmental problems. To solve these problems, a new type of NiFe-LDH/rGO electrically switched ion-selective (ESIX) film is designed, based on the dominant mechanism of inner-sphere complexation. An ESIX process allows the NiFe-LDH/rGO hybrid film to achieve a controllably selective uptake and release of the phosphate anions. This route involves tuning potential steps to regulate the redox states of the composite film and the variable metal (e.g., Ni, Fe (II)/(III)) in coordination centers…

Adsorption capacityPhosphorusInner-sphere complexationSettore ING-IND/27 - Chimica Industriale E TecnologicaPhosphatesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsBiomaterialsColloid and Surface ChemistryValence state transitionSelective extractionMetalsLayered double hydroxideHydroxidesGraphitePhosphate anion
researchProduct

Reduction of oxygen to H2O2 at carbon felt cathode in undivided cells. Effect of the ratio between the anode and the cathode surfaces and of other op…

2019

Abstract In the last years, the electrochemical conversion of oxygen to hydrogen peroxide at carbon felt has been largely studied in order to define a new route for the production of H2O2 and to optimize the electro-Fenton process, which is based on the cathodic generation of H2O2. In particular, many studies regarding electro-Fenton process were carried out in undivided cells in order to avoid the costs of the separator and to reduce the cell potentials. Hence, in order to optimize the cathodic conversion of oxygen to H2O2 in undivided cells, the effect of many parameters linked to the anodic process were here evaluated. In particular, it was demonstrated that the performances of the proce…

Materials scienceElectrochemical reduction of oxygen2chemistry.chemical_elementFiltration and Separation02 engineering and technologyElectrochemistryOxygenAnalytical ChemistryCathodic protectionlaw.inventionchemistry.chemical_compoundH020401 chemical engineeringlawUndivided cell0204 chemical engineeringHydrogen peroxideCarbon feltSeparator (electricity)Ratio between anode and cathode surfaceOSettore ING-IND/27 - Chimica Industriale E Tecnologica021001 nanoscience & nanotechnologyCathodeAnodechemistryChemical engineeringEffect of operating parameterElectro-Fenton0210 nano-technologyCurrent density
researchProduct

Development of a process for the treatment of synthetic wastewater without energy inputs using the salinity gradient of wastewaters and a reverse ele…

2019

Abstract Electrochemical processes are considered very effective methods for the treatment of wastewater contaminated by organics resistant to conventional biological processes and various inorganic pollutants. Large sites that treat wastewaters usually deal with a large number of waters often characterized by different salinity contents, that could be potentially used to provide the energy necessary for the electrochemical remediation. Hence, in this work a reverse electrodialysis (RED) process for the treatment of synthetic wastewaters contaminated by organics, without energy inputs, using the salinity gradient of different wastewaters, was studied, for the first time. It was found that t…

SalinityEnvironmental EngineeringChemical substanceEnvironmental remediationHealth Toxicology and Mutagenesis0208 environmental biotechnology02 engineering and technology010501 environmental sciencesWastewater01 natural sciencesWaste Disposal FluidCathodic protectionPhysical PhenomenaStack (abstract data type)ElectricityReversed electrodialysisEnvironmental ChemistryElectrodes0105 earth and related environmental sciencesPublic Health Environmental and Occupational HealthElectrochemicalGeneral MedicineGeneral ChemistryContaminationSettore ING-IND/27 - Chimica Industriale E TecnologicaPulp and paper industryPollution020801 environmental engineeringSalinityalinity gradientWastewaterEnvironmental sciencereverse electrodialysiChemosphere
researchProduct

A scalable three-dimensional porous λ-MnO2/rGO/Ca-alginate composite electroactive film with potential-responsive ion-pumping effect for selective re…

2021

Abstract A scalable three-dimensional (3D) porous composite electroactive film consisting of λ-MnO2, reduced graphene oxide (rGO) and calcium alginate (Ca-alg) was successfully fabricated and employed for the selective extraction of Li+ ions with low concentration via an electrochemically switched ion exchange (ESIX) technology. The Li+ ion adsorption capacity of the obtained λ-MnO2/rGO/Ca-alg composite electroactive film reached as high as 32.7 mg g−1 and more than 90% of its equilibrium adsorption capacity was achieved in 1 h. The λ-MnO2/rGO/Ca-alg composite electroactive film displayed evident selectivity towards Li+ ions. The separation factors for Li+/Na+ and Li+/Mg2+ reached 1040.57 a…

Materials scienceCalcium alginateIon exchangeGrapheneComposite numberOxideFiltration and Separation02 engineering and technology021001 nanoscience & nanotechnologyElectrochemistryAnalytical Chemistrylaw.inventionIonchemistry.chemical_compoundAdsorption020401 chemical engineeringchemistryChemical engineeringlaw0204 chemical engineering0210 nano-technologySeparation and Purification Technology
researchProduct

Electrochemical treatment of real wastewater. Part 1: Effluents with low conductivity

2018

Abstract The treatment of a real wastewater characterized by low conductivity was performed by anodic oxidation at boron doped diamond (BDD) in both conventional and microfluidic cells. The electrolyses carried out in conventional cells without supporting electrolyte were characterized by very high TOC removals but excessively high energetic consumptions and operating costs. The addition of sodium sulphate, as supporting electrolyte, allowed to strongly reduce the cell potentials and consequently the energetic consumptions and the operating costs. However, under various operating conditions, the addition of Na2SO4 caused a lower removal of the TOC. The best results in terms of both TOC remo…

Materials scienceSupporting electrolyteGeneral Chemical EngineeringSodiumchemistry.chemical_element02 engineering and technologyWastewater treatment010501 environmental sciencesConductivityElectrochemistry01 natural sciencesIndustrial and Manufacturing EngineeringLow conductivityEnvironmental ChemistryChemical Engineering (all)Micro reactorEffluent0105 earth and related environmental sciencesBoron doped diamondWaste managementAnodic oxidationChemistry (all)General Chemistry021001 nanoscience & nanotechnologyReal wastewaterElectrochemical oxidationWastewaterChemical engineeringchemistry0210 nano-technology
researchProduct

Electrochemically triggered iodide-vacancy BiOI film for selective extraction of iodide ion from aqueous solutions

2021

Abstract The effective extraction and regeneration of radioactive iodide remains an urgent concern for safe nuclear energy utilization. Herein, we developed a novel electrochemically triggered iodide-vacancy BiOI film, which exhibited excellent I− ion extraction capacity of 328.3 mg·g−1. Especially, due to the ion vacancy trap effect, the film showed high selectivity towards I− ions in the existence of a large number of competitive anions. Additionally, the electrochemically switched ion extraction (ESIE) process with this iodide-vacancy BiOI film possessed fast extraction kinetics and high stability. More importantly, the trapped I− ions were easily desorbed from the film without the secon…

chemistry.chemical_classificationAqueous solutionChemistryExtraction (chemistry)KineticsHigh selectivityInorganic chemistryIodideFiltration and Separation02 engineering and technologySettore ING-IND/27 - Chimica Industriale E Tecnologica021001 nanoscience & nanotechnologyIodide ions Iodide-vacancy BiOI film Electrochemically switched ion extraction Selective extraction Radioactive waterAnalytical ChemistryIonIodide ion020401 chemical engineeringVacancy defect0204 chemical engineering0210 nano-technology
researchProduct

Evaluating the Utilization of Innovative Electrochemical Methodologies for the Real Wastewater Treatment

2021

microfluidicwastewater treatmentreverse electrodialysisenergy consumptionelectrochemical
researchProduct