Utilizing Multimodal Data Through fsQCA to Explain Engagement in Adaptive Learning
Investigating and explaining the patterns of learners’ engagement in adaptive learning conditions is a core issue towards improving the quality of personalized learning services. This article collects learner data from multiple sources during an adaptive learning activity, and employs a fuzzy set qualitative comparative analysis (fsQCA) approach to shed light to learners’ engagement patterns, with respect to their learning performance. Specifically, this article measures and codes learners’ engagement by fusing and compiling clickstreams (e.g., response time), physiological data (e.g., eye-tracking, electroencephalography, electrodermal activity), and survey data (e.g., goal-orientation) to…